Answer: C
C. Place plastic around the metal wires, because electric charges
hardly move in plastic.
Answer:
A. 52 min
.A. 47 watts
Explanation:
Given that;
jim weighs 75 kg
and he walks 3.3 mph; the objective here is to determine how long must he walk to expend 300 kcal.
Using the following relation to determine the amount of calories burned per minute while walking; we have:

here;
MET = energy cost of a physical activity for a period of time
Obtaining the data for walking with a speed of 3.3 mph From the standard chart for MET, At 3.3 mph; we have our desired value to be 4.3
However;
the calories burned in a minute = 
= 5.644
Therefore, for walking for 52 mins; Jim burns approximately 293.475 kcal which is nearest to 300 kcal.
4.
Given that:
mass m = 75 kg
intensity = 6 kcal/min
The eg ergometer work rate = ??
Applying the formula:

where ;



∴
Converting to watts;
Since; 6.118kg-m/min is = 1 watt
Then 291.66 kgm /min will be equal to 47.67 watts
≅ 47 watts
Answer:

Explanation:
Let's use the decay equation.

Where:
- A is the activity at t time
- A₀ is the initial activity
- λ is the decay constant
We know that 
So we have:




Therefore, the half-life of the source is 6 hours.
I hope it helps you!
Answer:
the equilibrium wage rate is 10 and the equilibrium quantity of labor is 1000 workers
Explanation:
The equilibrium wage rate and the equilibrium quantity of labor are found as the point where the equation of demand intercepts the equation of supply, so the equilibrium quantity of labor is:

15 - (1/200) L = 5 + (1/200) L
15 - 5 = (1/200) L + (1/200) L
10 = (2/200) L
(10*200)/2 = L
1000 = L
Then, the equilibrium wage rate is calculated using either the equation of demand for labor or the equation of supply of labor. If we use the equation of demand for labor, we get:
W = 15 - (1/200) L
W = 15 - (1/200) 1000
W = 10
Finally, the equilibrium wage rate is 10 and the equilibrium quantity of labor is 1000 workers
If its out and has been rained on it will rust if its like metal or iron stuff like that it will rust
the answer is rust
but no so quickly