Answer:
<em>20 m/s in the same direction of the bus.</em>
Explanation:
<u>Relative Motion
</u>
Objects movement is always related to some reference. If you are moving at a constant speed, all the objects moving with you seem to be at rest from your reference, but they are moving at the same speed as you by an external observer.
If we are riding on a bus at 10 m/s and throw a ball which we see moving at 10 m/s in our same direction, then an external observer (called Ophelia) will see the ball moving at our speed plus the relative speed with respect to us, that is, at 20 m/s in the same direction of the bus.
Answer:
convection
Explanation:
Heat transfer by convection is caused by differences of temperature and density within a fluid.
Answer:
The final velocity of the thrower is
and the final velocity of the catcher is
.
Explanation:
Given:
The mass of the thrower,
.
The mass of the catcher,
.
The mass of the ball,
.
Initial velocity of the thrower, 
Final velocity of the ball, 
Initial velocity of the catcher, 
Consider that the final velocity of the thrower is
. From the conservation of momentum,

Consider that the final velocity of the catcher is
. From the conservation of momentum,

Thus, the final velocity of thrower is
and that for the catcher is
.
Answer:

Explanation:
The torque applied by a force can be calculated as

where
F is the magnitude of the force
d is the length of the arm
is the angle between the direction of the force and the arm
In this problem, we have
F = 15 N
d = 2.0 m

Substituting into the equation, we find
