Answer:
There is no experiment to prove that you are in motion
Explanation:
A frame of reference which has constant velocity is known as an inertial frame of reference. Motion is relative. One can detect one's motion only when one observes change in position with respect to a fixed body.
Thus, if you are in a spaceship moving at a constant speed in a straight line and unable to look outside, you would not be able to prove that you are moving. Everything within the spaceship would have same speed. If you will throw any object within the spaceship, then the parameters measured by you would also not show that the spaceship is in motion.
The
wavelength, frequency, and energy of a pulse of light containing 100 of this
photon is lambda, v, and 100E D. The correct answer
between all the choices given is the third choice or letter C. I am hoping that
this answer has satisfied your query about this specific question.
Because,
In left image pin is not touch to the wire.
In right image pin is touch to the wire.
Hope it helps you.....
Plz...Plz...Plz...Plz…Plz…
Mark be Brainliest.....
Please.....
And..
Please thanks me.....
Plz.....Plz.....
Momentum is Mass × Velocity
= 1875×22 = 41250 kg m/sec
Answer:
Linear momentum is mass multiplied by velocity, so it follows that angular momentum is the moment of inertia, measured in kilogram meters squared, multiplied by angular velocity, measured in radians per second. Radians are just an alternative to degrees.