
If the half-life of a sample of a radioactive substance is 30 seconds, how much would be left after 60 seconds? <span>
A. one-fourth</span>
Answer:
No
Explanation:
One mole of P₄ react with six moles of I₂ and gives 4 moles of PI₃.
When one gram phosphorus and 6 gram of iodine react they gives 8.234 g
ram of PI₃ .
Given data:
Mass of phosphorus = 1 g
Mass of iodine = 6 g
Mass of PI₃ = ?
Solution:
Chemical equation:
P₄ + 6I₂ → 4PI₃
Number of moles of P₄:
Number of moles = Mass /molar mass
Number of mole = 1 g / 123.9 g/mol
Number of moles = 0.01 mol
Number of moles of I₂:
Number of moles = Mass /molar mass
Number of moles = 6 g / 253.8 g/mol
Number of moles = 0.024 mol
Now we will compare the moles of PI₃ with I₂ and P₄.
I₂ : PI₃
6 : 4
0.024 :
4/6×0.024 = 0.02
P₄ : PI₃
1 : 4
0.01 : 4 × 0.01 = 0.04 mol
The number of moles of PI₃ produced by I₂ are less it will be limiting reactant.
Mass of PI₃ = moles × molar mass
Mass of PI₃ = 0.02 mol × 411.7 g/mol
Mass of PI₃ = 8.234 g
According to florida wildlife group who experimentally tape magnets to crocodile heads to disrupt their homing ability so they don't wander into residential areas
Answer:
The formula of the compound is:
N2H2
Explanation:
Data obtained from the question:
Nitrogen (N) = 93.28%
Hydrogen (H) = 6.72%
Next, we shall determine the empirical formula for the unknown compound. This is illustrated below:
N = 93.28%
H = 6.72%
Divide by their molar mass
N = 93.28 /14 = 6.663
H = 6.72 /1 = 6.7
Divide by the smallest
N = 6.663 / 6.663 = 1
H = 6.72 /6.663 = 1
Therefore, the empirical formula is NH.
Now, we can obtain the formula of the compound as follow:
The formula of a compound is simply a multiple of the empirical formula.
[NH]n = 30.04
[14 + 1]n = 30.04
15n = 30.04
Divide both side by 15
n = 30.04/15
n = 2
Therefore, the formula of the compound is:
[NH]n => [NH]2 => N2H2
Ammonia isn't an element, it's a compound made by mixing the elements Nitrogen and Hydrogen in the Haber process. Therefore, it isn't on the periodic table