We need to know the relationship between atmospheric pressure and the density of gas particles in an area of increasing pressure.
The relationship is: As air pressure in an area increases, the density of the gas particles in that area increases.
For any gaseous substance, density of gas is directly proportional to pressure of gas.
This can be explained from idial gas edquation:
PV=nRT
PV=
RT [where, w= mass of substance, M=molar mass of substance]
PM=
RT
PM=dRT [where, d=density of thesubstance]
So, for a particular gaseous substance (whose molar mass is known), at particular temperature, pressure is directly related to density of gaseous substance.
Therefore, as air pressure in an area increases, the density of the gas particles in that area increases.
<span>Name of type of mechanism </span>initiation step<span> first </span>propagation step<span> second </span>propagation step<span>(ii) </span>write<span> an overall </span>equation<span> for the </span>formation of dichloromethane<span> from ... Best Answer: i) This is a </span>free-radical<span> substitution mechanism.</span>
Gibbs free energy of a reaction (
Δ
G ) is the change in free energy of a system that undergoes the chemical reaction. It is the energy associated with the reaction, which is available to do some useful work. If ΔG<0
, then the reaction can be utilized to do some useful work. If
ΔG>0
, then work has to be done on the system or external energy is required to make the reaction happen. ΔG=0 when the reaction is at equilibrium and there is no net change taking place in the system.