Please mark me as brainliest ❤️
Answer:
-19 y^2 + 18 x y + 13 x^2
Step-by-step explanation:
Simplify the following:
16 x^2 + 15 x y - 19 y^2 - (3 x^2 - 3 x y)
Factor 3 x out of 3 x^2 - 3 x y:
16 x^2 + 15 x y - 19 y^2 - 3 x (x - y)
-3 x (x - y) = 3 x y - 3 x^2:
16 x^2 + 15 x y - 19 y^2 + 3 x y - 3 x^2
Grouping like terms, 16 x^2 + 15 x y - 19 y^2 - 3 x^2 + 3 x y = -19 y^2 + (15 x y + 3 x y) + (16 x^2 - 3 x^2):
-19 y^2 + (15 x y + 3 x y) + (16 x^2 - 3 x^2)
x y 15 + x y 3 = 18 x y:
-19 y^2 + 18 x y + (16 x^2 - 3 x^2)
16 x^2 - 3 x^2 = 13 x^2:
Answer: -19 y^2 + 18 x y + 13 x^2
Answer:
X = -3
Step-by-step explanation:
X/2-5 = 1
X/-3 = 1
Multiply both sides by -3 to isolate x
X = -3
Answer:
(A) Set A is linearly independent and spans
. Set is a basis for
.
Step-by-Step Explanation
<u>Definition (Linear Independence)</u>
A set of vectors is said to be linearly independent if at least one of the vectors can be written as a linear combination of the others. The identity matrix is linearly independent.
<u>Definition (Span of a Set of Vectors)</u>
The Span of a set of vectors is the set of all linear combinations of the vectors.
<u>Definition (A Basis of a Subspace).</u>
A subset B of a vector space V is called a basis if: (1)B is linearly independent, and; (2) B is a spanning set of V.
Given the set of vectors
, we are to decide which of the given statements is true:
In Matrix
, the circled numbers are the pivots. There are 3 pivots in this case. By the theorem that The Row Rank=Column Rank of a Matrix, the column rank of A is 3. Thus there are 3 linearly independent columns of A and one linearly dependent column.
has a dimension of 3, thus any 3 linearly independent vectors will span it. We conclude thus that the columns of A spans
.
Therefore Set A is linearly independent and spans
. Thus it is basis for
.
Answer: 60%
Step-by-step explanation:
45+30=75=100%
75/10=7.5=10%
7.5*6=45=60%