Answer:
Serine will be on the exterior of the globular protein while leucine on the interior of the globular proteins
Explanation:
The nature or solubility of the side cham determines the poition of amino acid on the globular protein and it is either hydrophilic or hydrophobic.
Serine is an hydrophilic amino acid and so it is position on the surface of the globular protein (Exterior)
While Leucine side chain is hydrophobic in nature is positioned on the interior of the globular protein.
There’s no pic for me to awnser your question
Answer: 0.4533mol/L
Explanation:
Molar Mass of CaCO3 = 40+12+(16x3) = 40+12+48 = 100g/mol
68g of CaCO3 dissolves in 1.5L of solution.
Xg of CaCO3 will dissolve in 1L i.e
Xg of CaCO3 = 68/1.5 = 45.33g/L
Molarity = Mass conc.(g/L) / molar Mass
Molarity = 45.33/100 = 0.4533mol/L
Answer:
Making oxygen
Oxygen can be made from hydrogen peroxide, which decomposes slowly to form water and oxygen:
hydrogen peroxide → water + oxygen
2H2O2(aq) → 2H2O(l) + O2(g)
The rate of reaction can be increased using a catalyst, manganese(IV) oxide. When manganese(IV) oxide is added to hydrogen peroxide, bubbles of oxygen are given off.
Apparatus arranged to measure the volume of gas in a reaction. Reaction mixture is in a flask and gas travels out through a pipe in the top and down into a trough of water. It then bubbles up through a beehive shelf into an upturned glass jar filled with water. The gas collects at the top of the jar, forcing water out into the trough below.
To make oxygen in the laboratory, hydrogen peroxide is poured into a conical flask containing some manganese(IV) oxide. The gas produced is collected in an upside-down gas jar filled with water. As the oxygen collects in the top of the gas jar, it pushes the water out.
Instead of the gas jar and water bath, a gas syringe could be used to collect the oxygen.