Answer:
Explanation:
There's an easy way to answer this and then an easier way. I'll do both since I'm not sure what you're doing this for: physics or calculus. Calculus is the easier way, btw.
Going with the physics version first, here's what we know:
a = -9.8 m/s/s
v₀ = 3.75 m/s
t = ??
That's not a whole lot...at least not enough to directly solve the problem. What we have to remember here is that at the max height of a parabolic path, the final velocity is 0. So we can add that to our info:
v = 0 m/s. Use the one-dimensional equation that utilizes all that info and allows us to solve for time:
v = v₀ +at and filling in:
0 = 3.75 + (-9.8)t and
-3.75 = -9.8t so
t = .38 seconds. This is how long it takes to get to its max height. Another thing we need to remember (which is why calculus is so much easier!) is that at the halfway point of a parabolic path (the max height), the object has traveled half the time it takes to make the whole trip. In other words, if .38 is how long it takes to go halfway, then 2(.38) is how long the whole trip takes:
2(.38) = .76 seconds. Now onto the calculus way:
The position function is
The first derivative of this is the velocity function and, knowing that when the velocity is 0, the time is halfway gone, we will find the velocity function and then set it equal to 0 and solve for t:
v(t) = -9.8t + 3.75 and
0 = -9.8t + 3.75 and
-3.75 = -9.8t so
t = ,38 and multiply that by 2 to find the time the whole trip took:
2(.38) = .76 seconds.
Answer:
the <em>ratio F1/F2 = 1/2</em>
the <em>ratio a1/a2 = 1</em>
Explanation:
The force that both satellites experience is:
F1 = G M_e m1 / r² and
F2 = G M_e m2 / r²
where
- m1 is the mass of satellite 1
- m2 is the mass of satellite 2
- r is the orbital radius
- M_e is the mass of Earth
Therefore,
F1/F2 = [G M_e m1 / r²] / [G M_e m2 / r²]
F1/F2 = [G M_e m1 / r²] × [r² / G M_e m2]
F1/F2 = m1/m2
F1/F2 = 1000/2000
<em>F1/F2 = 1/2</em>
The other force that the two satellites experience is the centripetal force. Therefore,
F1c = m1 v² / r and
F2c = m2 v² / r
where
- m1 is the mass of satellite 1
- m2 is the mass of satellite 2
- v is the orbital velocity
- r is the orbital velocity
Thus,
a1 = v² / r ⇒ v² = r a1 and
a2 = v² / r ⇒ v² = r a2
Therefore,
F1c = m1 a1 r / r = m1 a1
F2c = m2 a2 r / r = m2 a2
In order for the satellites to stay in orbit, the gravitational force must equal the centripetal force. Thus,
F1 = F1c
G M_e m1 / r² = m1 a1
a1 = G M_e / r²
also
a2 = G M_e / r²
Thus,
a1/a2 = [G M_e / r²] / [G M_e / r²]
<em>a1/a2 = 1</em>
Explanation:
hope this helps you out if not im sorry
The correct answer is c. The process of deposition causes rock and soil to be slowly gained. Deposition is a geological process in which soil and rocks are added to a landform.