D. 51 N. The minimum applied force that will cause the television slide is 51 N.
In order to solve this problem we have to use the force of static friction equation Fs = μs*n, where μs is the coefficient of static friction, and n is the normal force m*g.
With μs = 0.35, and n = 15kg*9.8m/s² = 147 N
Fs = (0.35)(147 N)
Fs = 51.45 N
Fs ≅ 51 N
Answer: a) for 150 Angstroms 6.63 *10^-3 eV; b) for 5 Angstroms 6.02 eV
Explanation: To solve this problem we have to use the relationship given by De Broglie as:
λ =p/h where p is the momentum and h the Planck constant
if we consider the energy given by acceleration tube for the electrons given by: E: e ΔV so is equal to kinetic energy of electrons p^2/2m
Finally we have:
eΔV=p^2/2m= h^2/(2*m*λ^2)
replacing we obtained the above values.
Answer:

Explanation:
Uncertainty principle say that the position and momentum can not be measured simultaneously except one relation which is described below,

Given that the uncertainty in x is 0.1 mm.
Therefore,

Therefore, uncertainty in the transverse momentum of photon is 
Answer:
The work and heat transfer for this process is = 270.588 kJ
Explanation:
Take properties of air from an ideal gas table. R = 0.287 kJ/kg-k
The Pressure-Volume relation is <em>PV</em> = <em>C</em>
<em>T = C </em> for isothermal process
Calculating for the work done in isothermal process
<em>W</em> = <em>P</em>₁<em>V</em>₁ ![ln[\frac{P_{1} }{P_{2} }]](https://tex.z-dn.net/?f=ln%5B%5Cfrac%7BP_%7B1%7D%20%7D%7BP_%7B2%7D%20%7D%5D)
= <em>mRT</em>₁
[∵<em>pV</em> = <em>mRT</em>]
= (5) (0.287) (272.039) ![ln[\frac{2.0}{1.0}]](https://tex.z-dn.net/?f=ln%5B%5Cfrac%7B2.0%7D%7B1.0%7D%5D)
= 270.588 kJ
Since the process is isothermal, Internal energy change is zero
Δ<em>U</em> = 
From 1st law of thermodynamics
Q = Δ<em>U </em>+ <em>W</em>
= 0 + 270.588
= 270.588 kJ
Answer:
hub9hybygbgybgybgygybsbgydgbydxbgbyxdgbyxdyggdxygbyxdgybzgbydbgyzsbgydgbyzdgxbybgydzs
Explanation: