Answer:
The question is incomplete, the complete question is "A car drives on a circular road of radius R. The distance driven by the car is given by d(t)= at^3+bt [where a and b are constants, and t in seconds will give d in meters]. In terms of a, b, and R, and when t = 3 seconds, find an expression for the magnitudes of (i) the tangential acceleration aTAN, and (ii) the radial acceleration aRAD3"
answers:
a.
b. 
Explanation:
First let state the mathematical expression for the tangential acceleration and the radial acceleration.
a. tangential acceleration is express as

since the distance is expressed as

the derivative is the velocity, hence

hence when we take the drivative of the velocity we arrive at
b. the expression for the radial acceleration is expressed as

Its average speed is 80 miles per hour because 75 minutes=1.25 hours, and the police car travels 80 miles in 1.25 hours, so I just need to take 100 divided 1.25 equal 80. As a result, the police car travels 80 miles in one hour. Hope it help!
Answer:
19 x 85 = 1,615 for distance. Displacement is 0
Explanation:
The total distance traveled by the ant in 9 round trips and one 1/2 trip, or 19 one bash way trips: 19 x 85cm = 1615cm. The displacement of the ant after the tenth trip is 0 cm ( the displacement origin is the nest.)
Answer:
The smallest possibility is 0.01E-22kgm/s
Explanation:
Using
Momentum= h/4πx
= 6.6x 10^-34Js/ 4(3.142* 50*10-12m)
= 0.01*10^-22kgm/s
Answer:
E. Some charges in the region are positive, and some are negative.
Explanation:
Electric potential is given as;

where;
W is the work done in moving a charge between two points which have a difference in potential
Q is quantity of charge in the given region
If the electric potential at a given point in the region is zero, then sum of the charges in the given region must be equal to zero. For the charges to sum to zero, some will be positive while some will be negative,.
Therefore, the correct statement in the given options is "E"
E. Some charges in the region are positive, and some are negative.