Answer:
(a). 2
(b). 1/3
(c). 11.11
Explanation:
(a). k= (t₍s₎-t₍o₎)/t₍o₎...............(1)
where k= retention factor,
t₍o₎=solvent time, t₍s₎= solute time.
Given t₍s₎=9.0 Minutes, t₍o₎=3.0 minutes.
∴ k= (9-3)/3
k= 2.
(b). the fraction of time the solute spend in the mobile phase in the column is the ratio of the solvent time to the solute time. = t₍o₎/t₍s₎..........(2)
= 3/9
=1/3.
(c). K=k(Vm/Vs)................(3)
where K= partition coefficient, k= retention factor, Vm=volume of mobile phase, Vs= volume of stationary phase.
∴K = k(Vm/Vs)
k=2, and Vs=0.18Vm.
∴K = 2(Vm/0.18vm)
⇒K = 2/0.18
∴K=11.11
Answer:
see below
Explanation:
acceleration = Δv /Δt
for this situation 60 / 10 = 6 m/s^2
B) vf = vo + at
vf = 0 + 6(3) =<u> 18 m/s after 3 seconds </u>
<u />
C) vf = at
60 = 6 ( t) t = 10 seconds ( actually, this was given)
d = 1/2 a t^2
= 1/2 (6) (10)^2 = <u>300 m </u>
<u />
Answer: 3rd option
Explanation: Since it has less mass and same force as other object it will have higher acceleration
Answer:
P = 16,000 kgm/s
Explanation:
<u><em>Given :</em></u>
Mass = m = 800 kg
Velocity = v = 72 km/hr = 20 m/s
<u><em>Required :</em></u>
Momentum = P = ?
<u><em>Formula:</em></u>
P = mv
<u><em>Solution:</em></u>
P = (800)(20)
P = 16,000 kgm/s