Answer:
12.5 g of Li are needed in order toproduce 0.60 moles of Li₃N
Explanation:
The reaction is:
6Li(s) + N₂(g) → 2Li₃N(s)
If nitrogen is in excess, the lithium is the limiting reactant.
Ratio is 2:6
2 moles of nitride were produced by 6 moles of Li
Then, 0.6 moles of nitride were produced by (0.6 .6)/ 2 = 1.8 moles of Li
Let's convert the moles to mass → 1.8 mol . 6.94 g/ 1mol = 12.5 g of Li
Answer:
2.47L
Explanation:
Using the combined gas law equation as follows:
P1V1/T1= P2V2/T2
Where;
P1 = initial pressure (mmHg)
P2 = final pressure (mmHg)
V1 = initial volume (L)
V2 = final volume (L)
T1 = initial temperature (K)
T2 = final temperature (K)
According to the information provided in this question;
P1 = 705mmHg
P2 = 760mmHg (STP)
V1 = 3.00L
V2 = ?
T1 = 35°C = 35 + 273 = 308K
T2 = 273K (STP)
Using P1V1/T1= P2V2/T2
705 × 3/308 = 760 × V2/273
2115/308 = 760V2/273
Cross multiply
308 × 760V2 = 2115 × 273
234,080V2 = 577,395
V2 = 577,395 ÷ 234,080
V2 = 2.47L
Answer:
c
Explanation:
1 calorie = 4.184J/g×°C
This also happens to be the specific heat capacity of water, which is the amount of energy it takes to raise the temperature of 1mL of water by 1°C