Answer:
0.19 g
Explanation:
Step 1: Given data
Volume of hydrogen at standard temperature and pressure (STP): 2.1 L
Step 2: Calculate the moles corresponding to 2.1 L of hydrogen at STP
At STP (273.15 K and 1 atm), 1 mole of hydrogen has a volume of 22.4 L if we treat it as an ideal gas.
2.1 L × 1 mol/22.4 L = 0.094 mol
Step 3: Calculate the mass corresponding to 0.094 moles of hydrogen
The molar mass of hydrogen is 2.02 g/mol.
0.094 mol × 2.02 g/mol = 0.19 g
Which could be soluble in soap?
Answer: Out of all the options presented above the one that represents which substance is soluble in soap is answer choice C) both because soap is part polar and part nonpolar.
I hope it helps, Regards.
Answer:
THE NEW PRESSURE OF THE HELIUM GAS AT 2.98 L VOLUME IS 124.8 kPa.
AT AN INCREASE ALTITUDE, THERE IS A LOWER PRESSURE ENVIRONMENT AND THE HELIUM GAS PRESSURE DECREASES AND HENCE AN INCREASE IN VOLUME.
Explanation:
The question above follows Boyle's law of the gas law as the temperature is kept constant.
Boyle's law states that the pressure of a fixed mass of gas is inversely proportional to the volume, provided the temperature remains constant.
Mathematically, P1 V1 = P2 V2
P1 = 150 kPa = 150 *10^3 Pa
V1 = 2.48 L
V2 = 2.98 L
P2 = ?
Rearranging the equation, we obtain;
P2 = P1 V1 / V2
P2 = 150 kPa * 2.48 / 2.98
P2 = 372 *10 ^3 / 2.98
P2 = 124.8 kPa.
The new pressure of the gas when at a height which increases the volume of the helium gas to 2.98 L is 124.8 kPa.
Answer:6.022 x 10^23 molecules
Explanation: Since one mole of any chemical compound always contains 6.022 x 10^23 molecules, you can calculate the number of molecules of any substance if you know its mass and its chemical formula.
<span>Water molecules form a complex with metal ions (usually a 6-coordinate complex). And the high charge density on a metal ion draws electrons away from the water molecules, making the O-H bonds more polar than normal. This allows the dissociation of the protons, making solutions of most metal ions acidic</span>