F(n)=3n-2
Plug in 2 for n. f(2)=3(2)-2=4
Answer:
The vertex of the function is at (2,3).
Step-by-step explanation:
I graphed the equation on the graph below.
If this answer is correct, please make me Brainliest!
ANSWER
the factor <em>will </em>
<em>1</em><em>1</em><em> </em><em>is </em><em>common</em><em> </em><em>in </em><em>both </em><em>the </em><em>given </em><em>term</em>
<em>so,</em><em> </em><em>when </em><em>we </em><em>take </em><em>1</em><em>1</em><em> </em><em>from </em><em>both </em><em>term </em>
<em>it </em><em>will </em><em>left </em><em>with </em><em> </em>
<em>1</em><em>1</em><em>(</em><em> </em><em>2</em><em>+</em><em>1</em><em>)</em><em> </em>
<em>this </em><em>is </em><em>the </em><em>final </em><em>answer</em><em> </em>
<em>hope </em><em>it </em><em>helps </em><em>and </em><em>u </em><em>have </em><em>a </em><em>great</em><em> </em><em><u>day</u></em>
Answer:
6
Step-by-step explanation:
b = 2 units
h = 6 units
A=1/2 *b*h
= 1/2 *6*2
= 6
Answer:
The roots are real and distinct.
Step-by-step explanation:
Given the following equation:

In this problem, a = 1, b = k and c = -k - 2
The discriminant is b² - 4ac, and for the roots to be real and distinct, it must be at least or greater than 0.
We get,
(k)²- 4(1)(-k - 2) = 1 - 4(-k - 2)
= k² + 4k + 8
Let's check:
At k = -2,

At k = 0,

At k = -100,

Therefore, we can conclude that for all values of k, the roots are real and distinct.
This has been a long way in answering this question, so it would be great if you could mark me as brainliest