Answer:
2062 lbm/h
Explanation:
The air will lose heat and the oil will gain heat.
These heats will be equal in magnitude.
qo = -qa
They will be of different signs because one is entering iits system and the other is exiting.
The heat exchanged by oil is:
qo = Gp * Cpo * (tof - toi)
The heat exchanged by air is:
qa = Ga * Cpa * (taf - tai)
The specific heat capacity of air at constant pressure is:
Cpa = 0.24 BTU/(lbm*F)
Therefore:
Gp * Cpo * (tof - toi) = Ga * Cpa * (taf - tai)
Ga = (Gp * Cpo * (tof - toi)) / (Cpa * (taf - tai))
Ga = (2200 * 0.45 * (150 - 100)) / (0.24 * (300 - 200)) = 2062 lbm/h
Answer:
The temperature T= 648.07k
Explanation:
T1=input temperature of the first heat engine =1400k
T=output temperature of the first heat engine and input temperature of the second heat engine= unknown
T3=output temperature of the second heat engine=300k
but carnot efficiency of heat engine =
where Th =temperature at which the heat enters the engine
Tl is the temperature of the environment
since both engines have the same thermal capacities <em>
</em> therefore 
We have now that

multiplying through by T

multiplying through by 300
-
The temperature T= 648.07k