1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
olga55 [171]
2 years ago
12

All of the dimensions on an aircraft drawing are_________ to the bottom of the drawing.

Engineering
1 answer:
Jet001 [13]2 years ago
7 0
All of the dimensions on an aircraft drawing are _________ to the bottom of the drawing


Answer: parallel
You might be interested in
What is 94*738^389428394
Lady_Fox [76]

Answer:

undefined

Explanation:

3 0
3 years ago
Here, we want to become proficient at changing units so that we can perform calculations as needed. The basic heat transfer equa
netineya [11]

Answer:

9500 kJ; 9000 Btu

Explanation:

Data:

m = 100 lb

T₁ = 25 °C

T₂ = 75 °C

Calculations:

1. Energy in kilojoules

ΔT = 75 °C - 25 °C = 50 °C  = 50 K

m = \text{100 lb} \times \dfrac{\text{1 kg}}{\text{2.205 lb}} \times \dfrac{\text{1000 g}}{\text{1 kg}}= 4.54 \times 10^{4}\text{ g}\\\\\begin{array}{rcl}q & = & mC_{\text{p}}\Delta T\\& = & 4.54 \times 10^{4}\text{ g} \times 4.18 \text{ J$\cdot$K$^{-1}$g$^{-1}$} \times 50 \text{ K}\\ & = & 9.5 \times 10^{6}\text{ J}\\ & = & \textbf{9500 kJ}\\\end{array}

2. Energy in British thermal units

\text{Energy} = \text{9500 kJ} \times \dfrac{\text{1 Btu}}{\text{1.055 kJ}} = \text{9000 Btu}

7 0
3 years ago
Air exits a compressor operating at steady-state, steady-flow conditions at 150 oC, 825 kPa, with a velocity of 10 m/s through a
ioda

Answer:

a) Qe = 0.01963 m^3 / s , mass flow rate m^ = 0.1334 kg/s

b) Inlet cross sectional area = Ai = 0.11217 m^2 , Qi = 0.11217 m^3 / s    

Explanation:

Given:-

- The compressor exit conditions are given as follows:

                  Pressure ( Pe ) = 825 KPa

                  Temperature ( Te ) = 150°C

                  Velocity ( Ve ) = 10 m/s

                  Diameter ( de ) = 5.0 cm

Solution:-

- Define inlet parameters:

                  Pressure = Pi = 100 KPa

                  Temperature = Ti = 20.0

                  Velocity = Vi = 1.0 m/s

                  Area = Ai

- From definition the volumetric flow rate at outlet ( Qe ) is determined by the following equation:

                   Qe = Ae*Ve

Where,

           Ae: The exit cross sectional area

                   Ae = π*de^2 / 4

Therefore,

                  Qe = Ve*π*de^2 / 4

                  Qe = 10*π*0.05^2 / 4

                  Qe = 0.01963 m^3 / s

 

- To determine the mass flow rate ( m^ ) through the compressor we need to determine the density of air at exit using exit conditions.

- We will assume air to be an ideal gas. Thus using the ideal gas state equation we have:

                   Pe / ρe = R*Te  

Where,

           Te: The absolute temperature at exit

           ρe: The density of air at exit

           R: the specific gas constant for air = 0.287 KJ /kg.K

             

                ρe = Pe / (R*Te)

                ρe = 825 / (0.287*( 273 + 150 ) )

                ρe = 6.79566 kg/m^3

- The mass flow rate ( m^ ) is given:

               m^ = ρe*Qe

                     = ( 6.79566 )*( 0.01963 )

                     = 0.1334 kg/s

- We will use the "continuity equation " for steady state flow inside the compressor i.e mass flow rate remains constant:

              m^ = ρe*Ae*Ve = ρi*Ai*Vi

- Density of air at inlet using inlet conditions. Again, using the ideal gas state equation:

               Pi / ρi = R*Ti  

Where,

           Ti: The absolute temperature at inlet

           ρi: The density of air at inlet

           R: the specific gas constant for air = 0.287 KJ /kg.K

             

                ρi = Pi / (R*Ti)

                ρi = 100 / (0.287*( 273 + 20 ) )

                ρi = 1.18918 kg/m^3

Using continuity expression:

               Ai = m^ / ρi*Vi

               Ai = 0.1334 / 1.18918*1

               Ai = 0.11217 m^2          

- From definition the volumetric flow rate at inlet ( Qi ) is determined by the following equation:

                   Qi = Ai*Vi

Where,

           Ai: The inlet cross sectional area

                  Qi = 0.11217*1

                  Qi = 0.11217 m^3 / s    

- The equations that will help us with required plots are:

Inlet cross section area ( Ai )

                Ai = m^ / ρi*Vi  

                Ai = 0.1334 / 1.18918*Vi

                Ai ( V ) = 0.11217 / Vi   .... Eq 1

Inlet flow rate ( Qi ):

                Qi = 0.11217 m^3 / s ... constant  Eq 2

               

6 0
3 years ago
A rich industrialist was found murdered in his house. The police arrived at the scene at 11:00 PM. The temperature of the corpse
d1i1m1o1n [39]

Answer:

The dude was killed around 6:30PM

Explanation:

Newton's law of cooling states:

    T = T_m + (T_0-T_m)e^{kt}

where,

T_0 = initial temp

T_m = temp of room

T = temp after t hours

k = how fast the temp is changing

t = time (hours)

T_0 = 31     because the body was initlally 31ºC when the police found it

T_m = 22   because that was the room temp

T = 30  because the body temp drop to 30ºC after 1 hour

t = 1 because that's the time it took for the body temp to drop to 30ºC

k=???   we don't know k so we must solve for this

rearrange the equation to solve for k

T = T_m + (T_0-T_m)e^{kt}

T - T_m= (T_0-T_m)e^{kt}

\frac{T - T_m}{(T_0-T_m)}= e^{kt}

ln(\frac{T - T_m}{T_0-T_m})=kt

\frac{ln(\frac{T - T_m}{T_0-T_m})}{t}=k

plug in the numbers to solve for k

k = \frac{ln(\frac{T - T_m}{T_0-T_m})}{t}

k = \frac{ln(\frac{30 - 22}{31-22})}{1}

k=ln(\frac{8}{9})

Now that we know the value for k, we can find the moment the murder occur. A crucial information that the question left out is the temperature of a human body when they're still alive. A living human body is about 37ºC. We can use that as out initial temperature to solve this problem because we can assume that the freshly killed body will be around 37ºC.

T_0 = 37     because the body was 37ºC right after being killed

T_m = 22   because that was the room temp

T = 31  because the body temp when the police found it

k=ln(\frac{8}{9})   we solved this earlier

t = ???   we don't know how long it took from the time of the murder to when the police found the body

Rearrange the equation to solve for t

T = T_m + (T_0-T_m)e^{kt}

T - T_m= (T_0-T_m)e^{kt}

\frac{T - T_m}{(T_0-T_m)}= e^{kt}

ln(\frac{T - T_m}{T_0-T_m})=kt

\frac{ln(\frac{T - T_m}{T_0-T_m})}{k}=t

plug in the values

t=\frac{ln(\frac{T - T_m}{T_0-T_m})}{k}

t=\frac{ln(\frac{31 - 22}{37-22})}{ln(8/9)}

t=\frac{ln(3/5)}{ln(8/9)}

t=\frac{ln(3/5)}{ln(8/9)}

t ≈ 4.337 hours from the time the body was killed to when the police found it.

The police found the body at 11:00PM so subtract 4.337 from that.

11 - 4.33 = 6.66 ≈ 6:30PM

7 0
3 years ago
96/64 reduced to its lowest term
Marina CMI [18]

Answer:

3/2

Explanation:

8 0
2 years ago
Other questions:
  • Define various optical properties of engineering materials
    11·1 answer
  • A rigid tank with a volume of 4 m^3 contains argon at 500 kPa and 30 deg C. It is connected to a piston cylinder (initially empt
    14·1 answer
  • Most licensed architects are members of which association?
    13·2 answers
  • Que rol tiene el ecosistema el patos
    15·1 answer
  • Hi. I would like to know why one side of an island can get more rain (more rain forms), while the other gets less.
    15·2 answers
  • If the power to a condensing unit has been turned off for an extended period of time, the _________________________ should be en
    12·1 answer
  • What are common names assigned to instruction addresses in a PLC program called
    8·1 answer
  • Yes I’m very cool I promise.
    15·1 answer
  • When an electron in a valence band is raised to a conduction band by sufficient light energy, semiconductors start conducting __
    9·1 answer
  • A ruptured desiccant bag in a reciever-driver is usually caused by what?​
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!