I’m pretty sure it’s 2 1/8
Answer:
μ = 235.38
σ = 234.54
Step-by-step explanation:
Assuming the table is as follows:
![\left[\begin{array}{cc}Savings&Frequency\\\$0-\$199&339\\\$200-\$399&86\\\$400-\$599&55\\\$600-\$799&18\\\$800-\$999&11\\\$1000-\$1199&8\\\$1200-\$1399&3\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7DSavings%26Frequency%5C%5C%5C%240-%5C%24199%26339%5C%5C%5C%24200-%5C%24399%2686%5C%5C%5C%24400-%5C%24599%2655%5C%5C%5C%24600-%5C%24799%2618%5C%5C%5C%24800-%5C%24999%2611%5C%5C%5C%241000-%5C%241199%268%5C%5C%5C%241200-%5C%241399%263%5Cend%7Barray%7D%5Cright%5D)
This is an example of grouped data, where a range of values is given rather than a single data point. First, find the total frequency.
n = 339 + 86 + 55 + 18 + 11 + 8 + 3
n = 520
The mean is the expected value using the midpoints of each range.
μ = (339×100 + 86×300 + 55×500 + 18×700 + 11×900 + 8×1100 + 3×1300) / 520
μ = 122400 / 520
μ = 235.38
The variance is:
σ² = [(339×100² + 86×300² + 55×500² + 18×700² + 11×900² + 8×1100² + 3×1300²) − (520×235.38²)] / (520 − 1)
σ² = 55009.7
The standard deviation is:
σ = 234.54
Answer:
$420
Step-by-step explanation:
To work this out you would need to find the 25% decrease of 560. To do this you would first divide 25 by 100, which gives you 0.25. Then you would minus 0.25 from 1, which gives you 0.75. This is because when finding percentage decreases you would first have to convert it into a decimal. Then you would have to minus it from 1 , to make sure that it will be a 25% decrease not a 75% decrease. Then you would multiply 560 by 0.75, which gives you 420.
1) Divide 25 by 100.

2) Minus 0.25 from 1.

3) Multiply 560 by 0.75.

Answer: No solution
Step-by-step explanation:
(10–3)–2=10–(3–)
10−3−2=10−3, this is false so it is not correct, and the answer for the equation is no solution.
Answer:
Step-by-step explanation:
1. When two chords intersect each other inside a circle, the products of their segments are equal. ... One chord is cut into two line segments A and B. The other into the segments C and D. This theorem states that A×B is always equal to C×D no matter where the chords are.
2. If two chords intersect inside a circle, then the measure of the angle formed is one half the sum of the measure of the arcs intercepted by the angle and its vertical angle . In the figure, m∠1=12(m⌢QR+m⌢PS) .
3. The intersecting chords theorem or just the chord theorem is a statement in elementary geometry that describes a relation of the four line segments created by two intersecting chords within a circle. It states that the products of the lengths of the line segments on each chord are equal.