Answer:
a) a = 2.383 m / s², b) T₂ = 120,617 N
, c) T₃ = 72,957 N
Explanation:
This is an exercise of Newton's second law let's fix a horizontal frame of reference
in this case the mass of the sleds is 30, 20 10 kg from the last to the first, in the first the horizontal force is applied.
a) request the acceleration of the system
we can take the sledges together and write Newton's second law
T = (m₁ + m₂ + m₃) a
a = T / (m₁ + m₂ + m₃)
a = 143 / (10 +20 +30)
a = 2.383 m / s²
b) the tension of the cables we think through cable A between the sledges of 1 and 20 kg
on the sled of m₁ = 10 kg
T - T₂ = m₁ a
in this case T₂ is the cable tension
T₂ = T - m₁ a
T₂ = 143 - 10 2,383
T₂ = 120,617 N
c) The cable tension between the masses of 20 and 30 kg
T₂ - T₃ = m₂ a
T₃ = T₂ -m₂ a
T₃ = 120,617 - 20 2,383
T₃ = 72,957 N
Answer:
C = 4,174 10³ V / m^{3/4}
, E = 7.19 10² / ∛x, E = 1.5 10³ N/C
Explanation:
For this exercise we can calculate the value of the constant and the electric field produced,
Let's start by calculating the value of the constant C
V = C
C = V / x^{4/3}
C = 220 / (11 10⁻²)^{4/3}
C = 4,174 10³ V / m^{3/4}
To calculate the electric field we use the expression
V = E dx
E = dx / V
E = ∫ dx / C x^{4/3}
E = 1 / C x^{-1/3} / (- 1/3)
E = 1 / C (-3 / x^{1/3})
We evaluate from the lower limit x = 0 E = E₀ = 0 to the upper limit x = x, E = E
E = 3 / C (0- (-1 / x^{1/3}))
E = 3 / 4,174 10³ (1 / x^{1/3})
E = 7.19 10² / ∛x
for x = 0.110 cm
E = 7.19 10² /∛0.11
E = 1.5 10³ N/C
Answer: The magnitude of force per length that each wire exert on the other wire is 2.67×10^-5 N/m.
The force is repulsive.
Explanation: Please see the attachments below
Answer:
d=0.137 m ⇒13.7 cm
Explanation:
Given data
m (Mass)=3.0 kg
α(incline) =34°
Spring Constant (force constant)=120 N/m
d (distance)=?
Solution
F=mg
F=(3.0)(9.8)
F=29.4 N
As we also know that
Force parallel to the incline=FSinα
F=29.4×Sin(34)
F=16.44 N
d(distance)=F/Spring Constant
d(distance)=16.44/120
d(distance)=0.137 m ⇒13.7 cm
Work = force * distance
and newton*meters = Joule
In this case, work = 250N*50m = 12500 J
So the answer is D) 12,500 J