Explanation:

We assume kinetic and potential energy changes are negligible and there is no work interactions.
a) Taking tank as a system, The energy balance can be define as


The mass balance could be written as

The final pressure in the tank could be defined as following

from standard steam table we know at

b)
From steam table at


initial mass in the tank could be define as

Final mass in the tank could be define as

The amount of steam that has entered the tank

c)
The internal energy in final state could be defined as following

The heat transfer could be defined as following

Answer:
Mechanical weathering is the physical breakdown of rock into smaller pieces. Chemical weathering is the breakdown of rock by chemical processes.
Explanation:
Mechanical weathering (also called physical weathering) breaks rock into smaller pieces. These smaller pieces are just like the bigger rock, just smaller. That means the rock has changed physically without changing its composition. The smaller pieces have the same minerals, in just the same proportions as the original rock.
Chemical weathering is the other important type of weathering. Chemical weathering is different from mechanical weathering because the rock changes, not just in size of pieces, but in composition Chemical weathering works through chemical reactions that cause changes in the minerals.
Answer:
a) d = 30.79 m
, b) θ = -22.4°
, θ = 22.4 South of East
Explanation:
The easiest way to solve problems with vectors is to use their components, for this the East-West direction coincides with the x-axis and the North-South direction coincides with the y-axis
Let's use the index for / Ricardo and the index for Jane, let's break down the displacements
Richard
X axis
x₁ = 26.0 sin (60)
x₁ = -22.52 m
Y Axis
y₁ = 26.0 cos 60
y₁ = 13 m / s
Jane
X axis
x₂ = 16.0 cos (180 +30)
x₂ = -13.85 m
Y Axis
y₂ = 16.0 sin (180 + 30)
y₂ = - 8.0 m
Now we can use Pythagoras' theorem to find the distance between them
d = √ [(x₂ -x₁)² + (y₂ -y₁)²]
d = √ [(-13.85 + 22.52)² + (-8 -13)²]
d = 30.79 m
Let's use trigonometry to enter the address
tan θ = Δy / Δx
θ = tan⁻¹ Δy / Δx
θ = tan⁻¹ (-13.85 + 22.52) / (-8 - 13)
θ = tan⁻¹ (-8.67 / 21)
θ = -22.4°
The negative sign indicates that the angle is measured from the axis clockwise.
In the form of cardinal s point is
θ = 22.4 South of East