1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
tatiyna
3 years ago
14

Trouble finding arclength calc 2

Mathematics
1 answer:
kiruha [24]3 years ago
7 0

Answer:

S\approx1.1953

Step-by-step explanation:

So we have the function:

y=3-x^2

And we want to find the arc-length from:

0\leq x\leq \sqrt3/2

By differentiating and substituting into the arc-length formula, we will acquire:

\displaystyle S=\int\limits^\sqrt3/2}_0 {\sqrt{1+4x^2} \, dx

To evaluate, we can use trigonometric substitution. First, notice that:

\displaystyle S=\int\limits^\sqrt3/2}_0 {\sqrt{1+(2x)^2} \, dx

Let's let y=2x. So:

y=2x\\dy=2\,dx\\\frac{1}{2}\,dy=dx

We also need to rewrite our bounds. So:

y=2(\sqrt3/2)=\sqrt3\\y=2(0)=0

So, substitute. Our integral is now:

\displaystyle S=\frac{1}{2}\int\limits^\sqrt3}_0 {\sqrt{1+y^2} \, dy

Let's multiply both sides by 2. So, our length S is:

\displaystyle 2S=\int\limits^\sqrt3}_0 {\sqrt{1+y^2} \, dy

Now, we can use trigonometric substitution.

Note that this is in the form a²+x². So, we will let:

y=a\tan(\theta)

Substitute 1 for a. So:

y=\tan(\theta)

Differentiate:

y=\sec^2(\theta)\, d\theta

Of course, we also need to change our bounds. So:

\sqrt3=\tan(\theta), \theta=\pi/3\\0=\tan(\theta), \theta=0

Substitute:

\displaystyle 2S= \int\limits^{\pi/3}_0 {\sqrt{1+\tan^2(\theta)}\sec^2(\theta) \, d\theta

The expression within the square root is equivalent to (Pythagorean Identity):

\displaystyle 2S= \int\limits^{\pi/3}_0 {\sqrt{\sec^2(\theta)}\sec^2(\theta) \, d\theta

Simplify:

\displaystyle 2S= \int\limits^{\pi/3}_0 (\sec(\theta))\sec^2(\theta) \, d\theta

Now, we have to evaluate this integral. To do this, we can use integration by parts. So, let's let u=sec(θ) and dv=sec²(θ). Therefore:

u=\sec(\theta)\\du=\sec(\theta)\tan(\theta)\, d\theta

And:

dv=\sec^2(\theta)\, d\theta\\v=\tan(\theta)

Integration by parts:

\displaystyle 2S= \int\limits^{\pi/3}_0 (\sec(\theta))\sec^2(\theta) \, d\theta=\sec(\theta)\tan(\theta)-(\int\limits^{\pi/3}_0 {\tan^2(\theta)\sec(\theta)} \, d\theta)

Again, let's using the Pythagorean Identity, we can rewrite tan²(θ) as:

\displaystyle 2S= \int\limits^{\pi/3}_0 (\sec(\theta))\sec^2(\theta) \, d\theta=\sec(\theta)\tan(\theta)-(\int\limits^{\pi/3}_0 {(\sec^2(\theta)-1)\sec(\theta)} \, d\theta)

Distribute:

\displaystyle 2S= \int\limits^{\pi/3}_0 (\sec(\theta))\sec^2(\theta) \, d\theta=\sec(\theta)\tan(\theta)-(\int\limits^{\pi/3}_0 {(\sec^3(\theta)-\sec(\theta)} \, d\theta)

Now, let's make the single integral into two integrals. So:

\displaystyle 2S= \int\limits^{\pi/3}_0 (\sec(\theta))\sec^2(\theta) \, d\theta=\sec(\theta)\tan(\theta)-(\int\limits^{\pi/3}_0 {\sec^3(\theta)\, d\theta-\int\limits^{\pi/3}_0 {\sec(\theta)}\, d\theta)

Distribute the negative:

\displaystyle 2S= \int\limits^{\pi/3}_0 (\sec(\theta))\sec^2(\theta) \, d\theta=\sec(\theta)\tan(\theta)-\int\limits^{\pi/3}_0 {\sec^3(\theta)\, d\theta+\int\limits^{\pi/3}_0 {\sec(\theta)}\, d\theta

Notice that the integral in the first equation and the second integral in the second equation is the same. In other words, we can add the second integral in the second equation to the integral in the first equation. So:

\displaystyle 2S= 2\int\limits^{\pi/3}_0 (\sec(\theta))\sec^2(\theta) \, d\theta=\sec(\theta)\tan(\theta)+\int\limits^{\pi/3}_0 {\sec(\theta)}\, d\theta

Divide the second and third equation by 2. So: \displaystyle 2S= \int\limits^{\pi/3}_0 (\sec(\theta))\sec^2(\theta) \, d\theta=\frac{1}{2}(\sec(\theta)\tan(\theta)+\int\limits^{\pi/3}_0 {\sec(\theta)}\, d\theta)

Now, evaluate the integral in the second equation. This is a common integral, so I won't integrate it here. Namely, it is:

\displaystyle 2S= \int\limits^{\pi/3}_0 (\sec(\theta))\sec^2(\theta) \, d\theta=\frac{1}{2}(\sec(\theta)\tan(\theta)+\ln(\tan(\theta)+\sec(\theta))

Therefore, our arc length will be equivalent to:

\displaystyle 2S=\frac{1}{2}(\sec(\theta)\tan(\theta)+\ln(\tan(\theta)+\sec(\theta)|_{0}^{\pi/3}

Divide both sides by 2:

\displaystyle S=\frac{1}{4}(\sec(\theta)\tan(\theta)+\ln(\tan(\theta)+\sec(\theta)|_{0}^{\pi/3}

Evaluate:

S=\frac{1}{4}((\sec(\pi/3)\tan(\pi/3)+\ln(\tan(\pi/3)+\sec(\pi/3))-(\sec(0)\tan(0)+\ln(\tan(0)+\sec(0))

Evaluate:

S=\frac{1}{4}((2\sqrt3+\ln(\sqrt3+2))-((1)(0)+\ln(0+1))

Simplify:

S=\frac{1}{4}(2\sqrt 3+\ln(\sqrt3+2)}

Use a calculator:

S\approx1.1953

And we're done!

You might be interested in
Can someone give me the answer and explain it to me? I honestly don't even get this-
77julia77 [94]

Answer:

the ratio is 1:7

so the answer is 7 gallons of white paint

Step-by-step explanation:

Hope this helps!!

7 0
3 years ago
Read 2 more answers
1. Grace rode her bike 5 miles in 20 minutes. At this rate, how many miles can she ride her bike in 30 minutes? *
erastova [34]

Answer:

14

Step-by-step explanation:

add the stuff together

8 0
2 years ago
Aiden put two-fifths of his Money into his piggy bank. He had $15 left in his pocket to buy a toy. How much money did aiden have
Travka [436]

Answer:25

Step-by-step explanation:

15x 2/5=25

5 0
3 years ago
Read 2 more answers
Z+x3:use x = 1 and z = 19
pogonyaev

Answer:21

Step-by-step explanation: plug in 19 and 1

1x3 is 3 plus 19 is 21

7 0
3 years ago
Which function is graphed on the coordinate plane below?
liq [111]

Answer:

I'm really good at graphing and math so anytime you need help tell me.

also there is no coordinate plane....

Step-by-step explanation:

7 0
3 years ago
Other questions:
  • What is a simple formula to solve a math sequence? Or a couple formulas if possible? Thanks!
    15·1 answer
  • james has $3000 in credit card debt, which charges 14% interest. how long will it take to pay off the card if he makes the minim
    12·1 answer
  • A grocery store bought milk for $2.70 per half gallon and stored it in two refrigerators. During the night, one refrigerator mal
    8·1 answer
  • There are 24 markers in a box. Nine of the markers are fine tip and the rest are bold tip. What is the ratio of fine tip markers
    14·1 answer
  • ALL THE INFO IS IN THE PIC PLEASE HELPPPPPP 100 POINTSSSS I WILL MARK BRAINLIEST TO BEST ANSWER
    9·2 answers
  • Combine the cube of k and 27
    9·2 answers
  • Seven more than three times a number is thirty-one. Write an equation
    9·1 answer
  • Help me plsssssssssssssssss
    9·1 answer
  • if I was born in 2007, and my mother was born in 1989. what is the difference between my mothers age and mine?
    8·2 answers
  • Central Angles
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!