Answer:
Open- closed
Explanation:
It has Open-closed configuration of its end
Answer:
true
Explanation:
i believe that's the answer hope that helps
Answer:
8050 J
Explanation:
Given:
r = 4.6 m
I = 200 kg m²
F = 26.0 N
t = 15.0 s
First, find the angular acceleration.
∑τ = Iα
Fr = Iα
α = Fr / I
α = (26.0 N) (4.6 m) / (200 kg m²)
α = 0.598 rad/s²
Now you can find the final angular velocity, then use that to find the rotational energy:
ω = αt
ω = (0.598 rad/s²) (15.0 s)
ω = 8.97 rad/s
W = ½ I ω²
W = ½ (200 kg m²) (8.97 rad/s)²
W = 8050 J
Or you can find the angular displacement and find the work done that way:
θ = θ₀ + ω₀ t + ½ αt²
θ = ½ (0.598 rad/s²) (15.0 s)²
θ = 67.3 rad
W = τθ
W = Frθ
W = (26.0 N) (4.6 m) (67.3 rad)
W = 8050 J
Answer:
the tension is 18513N
Explanation:
Given that
mass = 1683kg
acceleration = 1.2m/s^2
acceleration due to gravity = 9.8m/s^2
T-mg = ma
T = ma + mg
T = m(a +g)
T = 1683 kg(1.20 m/s2 + 9.8)
T = 1683 (11)
T = 18513N
therefore, the tension is 18513N
Answer:
6.71×10⁻⁷ m
Explanation:
Using thin film constructive interference formula as:
<u>2×n×t = m×λ</u>
Where,
n is the refractive index of the refracted surface
t is the thickness of the surface
λ is the wavelength
If m =1
Then,
2×n×t = λ
Given that refractive index pf the oil is 1.22
Thickness of the oil = 275 nm
Also, 1 nm = 10⁻⁹ m
Thickness = 275×10⁻⁹ m
So,
Wavelength is :
<u>λ= 2×n×t = 2× 1.22 × 275×10⁻⁹ m = 6.71×10⁻⁷ m</u>