1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Korolek [52]
3 years ago
9

The Lyman series comprises a set of spectral lines. All of these lines involve a hydrogen atom whose electron undergoes a change

in energy level, either beginning at the n = 1 level (in the case of an absorption line) or ending there (an emission line).
The inverse wavelengths for the Lyman series in hydrogen are given by:
1/λ = RH (1 - 1/n^2) ,
where n = 2, 3, 4, and the Rydberg constant RH = 1.097 x 10^7 m^−1. (Round your answers to at least one decimal place. Enter your answers in nm.)
(a) Compute the wavelength for the first line in this series (the line corresponding to n = 2).
(b) Compute the wavelength for the second line in this series (the line corresponding to n = 3).
(c) Compute the wavelength for the third line in this series (the line corresponding to n = 4).
(d) In which part of the electromagnetic spectrum do these three lines reside?
O visible light region
O infrared region
O ultraviolet region
O gamma ray region
O x-ray region
Physics
1 answer:
mihalych1998 [28]3 years ago
8 0

Answer:

a) 1.2*10^-7 m

b) 1.0*10^-7 m

c) 9.7*10^-8 m

d) ultraviolet region

Explanation:

To find the different wavelengths you use the following formula:

\frac{1}{\lambda}=R_H(1-\frac{1}{n^2})

RH: Rydberg constant = 1.097 x 10^7 m^−1.

(a) n=2

\frac{1}{\lambda}=(1.097*10^7m^{-1})(1-\frac{1}{(2)^2})=8227500m^{-1}\\\\\lambda=1.2*10^{-7}m

(b)

\frac{1}{\lambda}=(1.097*10^7m^{-1})(1-\frac{1}{(3)^2})=9751111,1m^{-1}\\\\\lambda=1.0*10^{-7}m

(c)

\frac{1}{\lambda}=(1.097*10^7m^{-1})(1-\frac{1}{(4)^2})=10284375m^{-1}\\\\\lambda=9.7*10^{-8}m

(d) The three lines belong to the ultraviolet region.

You might be interested in
Can we see the back side of the moon from earth?
Olegator [25]

No. The moon always keeps the same side facing us. Its rotation and revolution periods are equal.

5 0
3 years ago
Read 2 more answers
Which chemical reaction absorbs energy?
andre [41]
Photosynthesis. Photosynthesis is the process the plant uses to absorbs light to make food
8 0
3 years ago
Read 2 more answers
How many electrons will aluminum gain or lose when it forms an ion?
Tanya [424]
In the form of an ion, Al 3+, It will lose 3 electrons
6 0
3 years ago
PLEASE HELP! HURRY. ALMOST OUT OF TIME
IRISSAK [1]

Answer:

balanced hurry up fam

gurry hurry hurry

6 0
3 years ago
Read 2 more answers
a ball of mass 100g moving at a velocity of 100m/s collides with another ball of mass 400g moving at 50m/s in same direction, if
klio [65]

Answer:

Velocity of the two balls after collision: 60\; \rm m \cdot s^{-1}.

100\; \rm J of kinetic energy would be lost.

Explanation:

<h3>Velocity</h3>

Because the question asked about energy, convert all units to standard units to keep the calculation simple:

  • Mass of the first ball: 100\; \rm g = 0.1\; \rm kg.
  • Mass of the second ball: 400\; \rm g = 0.4 \; \rm kg.

The two balls stick to each other after the collision. In other words, this collision is a perfectly inelastic collision. Kinetic energy will not be conserved. The velocity of the two balls after the collision can only be found using the conservation of momentum.

Assume that the system of the two balls is isolated. Thus, the sum of the momentum of the two balls will stay the same before and after the collision.

The momentum of an object of mass m and velocity v is: p = m \cdot v.

Momentum of the two balls before collision:

  • First ball: p = m \cdot v = 0.1\; \rm kg \times 100\; \rm m \cdot s^{-1} = 10\; \rm kg \cdot m \cdot s^{-1}.
  • Second ball: p = m \cdot v = 0.4\; \rm kg \times 50\; \rm m \cdot s^{-1} = 20\; \rm kg \cdot m \cdot s^{-1}.
  • Sum: 10\; \rm kg \cdot m \cdot s^{-1} + 20 \; \rm kg \cdot m \cdot s^{-1} = 30 \; \rm kg \cdot m \cdot s^{-1} given that the two balls are moving in the same direction.

Based on the assumptions, the sum of the momentum of the two balls after collision should also be 30\; \rm kg \cdot m \cdot s^{-1}. The mass of the two balls, combined, is 0.1\; \rm kg + 0.4\; \rm kg = 0.5\; \rm kg. Let the velocity of the two balls after the collision v\; \rm m \cdot s^{-1}. (There's only one velocity because the collision had sticked the two balls to each other.)

  • Momentum after the collision from p = m \cdot v: (0.5\, v)\; \rm kg \cdot m \cdot s^{-1.
  • Momentum after the collision from the conservation of momentum: 30\; \rm kg \cdot m \cdot s^{-1}.

These two values are supposed to describe the same quantity: the sum of the momentum of the two balls after the collision. They should be equal to each other. That gives the equation about v:

0.5\, v = 30.

v = 60.

In other words, the velocity of the two balls right after the collision should be 60\; \rm m \cdot s^{-1}.

<h3>Kinetic Energy</h3>

The kinetic energy of an object of mass m and velocity v is \displaystyle \frac{1}{2}\, m \cdot v^{2}.

Kinetic energy before the collision:

  • First ball: \displaystyle \frac{1}{2} \, m \cdot v^2 = \frac{1}{2}\times 0.1\; \rm kg \times \left(100\; \rm m \cdot s^{-1}\right)^{2} = 500\; \rm J.
  • Second ball: \displaystyle \frac{1}{2} \, m \cdot v^2 = \frac{1}{2}\times 0.4\; \rm kg \times \left(50\; \rm m \cdot s^{-1}\right)^{2} = 500\; \rm J.
  • Sum: 500\; \rm J + 500\; \rm J = 1000\; \rm J.

The two balls stick to each other after the collision. Therefore, consider them as a single object when calculating the sum of their kinetic energies.

  • Mass of the two balls, combined: 0.5\; \rm kg.
  • Velocity of the two balls right after the collision: 60\; \rm m\cdot s^{-1}.

Sum of the kinetic energies of the two balls right after the collision:

\displaystyle \frac{1}{2} \, m \cdot v^{2} = \frac{1}{2}\times 0.5\; \rm kg \times \left(60\; \rm m \cdot s^{-1}\right)^2 = 900\; \rm J.

Therefore, 1000\; \rm J - 900\; \rm J = 100\; \rm J of kinetic energy would be lost during this collision.

7 0
3 years ago
Other questions:
  • A straight, nonconducting plastic wire 9.50 cm long carries a charge density of 130 nC/m distributed uniformly along its length.
    5·1 answer
  • A turnip is dropped from a height of 70 meters. How long does it take to hit the ground?
    14·1 answer
  • During which stage of prenatal development does breathing movement begin?
    5·2 answers
  • A golfer on a level fairway hits a ball at an angle of 21° to the horizontal that travels 99 yd before striking the ground. He t
    7·1 answer
  • The Moon orbits Earth in an average of p = 27.3 days at an average distance of a =384,000 kilometers. Using Newton’s version of
    13·1 answer
  • A 5.0 c charge is 10 m from a small test charge. what is the magnitude of the electric field at the location of the test charge
    11·1 answer
  • E = mc2 means that
    6·1 answer
  • The fact that Voyager 10 continues to speed out of the solar system, even though its rockets have no fuel, is an example of Grou
    14·1 answer
  • Energy cannot be created nor destroyed, only changed from one form to another. How does listening to music on a radio obey the l
    15·1 answer
  • (02.06)plz help me 20 points ​
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!