<u>Answer:</u>
<em>The average speed of the car is 66.9 km/h</em>
<u>Explanation:</u>
Here distance covered with the speed <em>57 km/h=7 km </em>
distance covered with the speed of <em>81 km/h=7 km</em>
<em>Average speed is equal to the ratio of total distance to the total time.
</em>
<em>total distance= 7 + 7= 14 km </em>
<em>
</em>
<em>time taken to cover the first 7 km= 7/57 h </em>
<em>time taken to cover the second part of the journey = 7/81 h
</em>
<em>average speed =
</em>
<u><em>Shortcut:
</em></u>
<em>When equal distances are covered with different speeds average speed=2 ab/(a+b) where a and b are the variable speeds in the phases.
</em>
Answer:
Evaporation
Explanation:
Evaporation is a form of mass tranfer phenomena where by water are moved from the earth surface into the atmosphere as vapours,it is path of the water cycle a decription of the path moved by land water until it turns into rain, humidity,air and temperature are factors that influence evaporation though evaporation can happen at all temperature
Then the tangent of angle-Θ is (Ay / Ax).
Answer:
15.4 kg.
Explanation:
From the law of conservation of momentum,
Total momentum before collision = Total momentum after collision
mu+m'u' = V(m+m').................... Equation 1
Where m = mass of the first sphere, m' = mass of the second sphere, u = initial velocity of the first sphere, u' = initial velocity of the second sphere, V = common velocity of both sphere.
Given: m = 7.7 kg, u' = 0 m/s (at rest)
Let: u = x m/s, and V = 1/3x m/s
Substitute into equation 1
7.7(x)+m'(0) = 1/3x(7.7+m')
7.7x = 1/3x(7.7+m')
7.7 = 1/3(7.7+m')
23.1 = 7.7+m'
m' = 23.1-7.7
m' = 15.4 kg.
Hence the mass of the second sphere = 15.4 kg