Answer:
Explanation:
Phenolphthalein is a protonated indicator and methyl orange is a basic indicator having hydroxyl ionisable part .
Phenolphthalein can be represented by the following formula
HPh which ionizes in water as follows
HPh + H₂O ⇄ H₃O⁺ + Ph⁻
( colourless ) ( pink )
In acidic solution it is in the form of protonated Hph form which is colourless
In basic medium , it ionises to give H₃O⁺ and unprotonated Ph⁻ whose colour is pink .
It provides us with the knowledge of what the cation and anion of the compound are, as well as how many atoms of each are present.
Answer:
0.479 M or mol/L
Explanation:
So Molarity is moles/litres of solution...often written as M=mol/L
So here we are given grams of BaCl2 which we have to convert to moles. To convert to moles of BaCl2 we have to divide 63.2 g BaCl2 by molar mass of BaCl2 which is 208.23 g/mol so you get 63.2/208.23 = 0.3035 moles of BaCl2
Second step is converting the 634mL to litres by simply dividing by 1000 because we know 1 litre has 1000ml so 634/1000 = 0.634L
Now we just plug these guys in our molarity formula M=mol/L
M= 0.3035/0.634 = 0.479 M or mol/L
V ( H2SO4) = 35 mL / 1000 => 0.035 L
M ( H2SO4) = ?
V ( NaOH ) = 25 mL / 1000 => 0.025 L
M ( NaOH ) = 0.320 M
number of moles NaOH:
n = M x V
n = 0.025 x 0.320 => 0.008 moles of NaOH
Mole ratio:
<span>2 NaOH + H2SO4 = Na2SO4 + 2 H2O
</span>
2 moles NaOH ---------------------- 1 mole H2SO4
0.008 moles moles NaOH ---------- ??
0.008 x 1 / 2 => 0.004 moles of H2SO4 :
Therefore:
M ( H2SO4) = n / V
M = 0.004 / 0.035
= 0.114 M
hope this helps!