Answer:
Explanation:
The oxidation state, sometimes referred to as oxidation number, describes the degree of oxidation (loss of electrons) of an atom in a chemical compound. Conceptually, the oxidation state, which may be positive, negative or zero, is the hypothetical charge that an atom would have if all bonds to atoms of different elements were 100% ionic, with no covalent component. This is never exactly true for real bonds.
The term oxidation was first used by Antoine Lavoisier to signify reaction of a substance with oxygen. Much later, it was realized that the substance, upon being oxidized, loses electrons, and the meaning was extended to include other reactions in which electrons are lost, regardless of whether oxygen was involved.
Helped?
Brainliest?
Answer:
90.3 L
Explanation:
Given data:
Volume of water produced = 77.4 L
Volume of oxygen required = ?
Solution:
Chemical equation:
2C₂H₆ + 7O₂ → 4CO₂ + 6H₂O
It is known that,
1 mole = 22.414 L
There are 7 moles of oxygen = 7×22.414 = 156.9 L
There are 6 moles of water = 6×22.414 = 134.5 L
Now we will compare:
H₂O : O₂
134.5 : 156.9
77.4 : 156.9/134.5×77.4 =90.3 L
So for the production of 77.4 L water 90.3 L oxygen is required.
Answer:
Infrared radiation lies between the visible and microwave portions of the electromagnetic spectrum. Infrared waves have wavelengths longer than visible and shorter than microwaves, and have frequencies which are lower than visible and higher than microwaves.
Explanation:
The ideal gas law:

p - pressure, n - number of moles, R - the gas constant, T - temperature, V - volume
The volume and temperature of all three containers are the same, so the pressure depends on the number of moles. The greater the number of moles, the higher the pressure.
The mass of gases is 50 g.

The greatest number of moles is in the container with Ar, so there is the highest pressure.
The answer is C
Sbbsshhshsgssh