Answer:
See the answer and the resolution below
Explanation:
The equation of the decomposition of magnesium carbonate is as follows:
Mg C03 (white solid) ---> C02 (gas) + Mg= (solid)
To calculate the mass of carbon dioxide produced, the weight of 1 mol of this and 1 mol of MgC03 is calculated. Then a simple rule of 3 is made.
Weight 1 mol of MgC03= Weight Mg + Weight C+ 3x(Weight 0)= 24,305g+ 12,017+3x (15,999)= 84, 318g/mol
Weight 1 mol of C02= Weight C + 2x(Weight 0)=12,017+2x (15,999)= 44, 008g/mol
84, 319 g MgC03------44,008g C02
36,0 g MgC03------X= (36,0 g MgC03x44,008g C02)/84, 319 g MgC03= 18,8 g C02
Answer:
hi! I hope your having a awesome day
Explanation:
The volume of water he dissolved the solute is 250 cubic centimeter.
<u>Explanation</u>:
Concentration = mass of solute in g / volume in dm^3
The concentration of a solution is defined as the ratio of mass of solute in grams to the volume of water in dm^3.
If concentration of a solution = 8 g/dm^3.
mass of solute =2 g.
Volume of a water = 2 / 8 = 0.25 dm^3. (or) 250 cubic centimeter.
In nature, water exists in the liquid, solid, and gaseous states. It is in dynamic equilibrium between the liquid and gas states at 0 degrees Celsius and 1 atm of pressure. At room temperature (approximately 25 degrees Celsius), it is a tasteless, odorless, and colorless liquid.
Answer:
184.113 g/mol
Explanation: The atomic mass of Mg is 24.3 amu. The atomic mass of bromine is 79.9. Therefore, the formula weight of MgBr2 equals 24.3 amu + (2 × 79.9 amu), or 184.1 amu. Because a substance's molar mass has the same numerical value as its formula weight, the molar mass of MgBr2 equals 184.1 g/mol.