Weight equals mass times gravitational acceleration=400N, so mass=400/9.8=41kg approx.
The <span>force that is needed to accelerate an object 5 m/s if the object has a mass of 10kg 50N because you multiply 5 and 10</span>
Answer:
the average force exerted by seatbelts on the passenger is 5625 N.
Explanation:
Given;
initial velocity of the car, u = 50 m/s
distance traveled by the car, s = 20 m
final velocity of the after coming to rest, v = 0
mass of the passenger, m = 90 kg
Determine the acceleration of the car as it hit the pile of dirt;
v² = u² + 2as
0 = 50² + (2 x 20)a
0 = 2500 + 40a
40a = -2500
a = -2500/40
a = -62.5 m/s²
The deceleration of the car is 62.5 m/s²
The force exerted on the passenger by the backward action of the car is calculated as follows;
F = ma
F = 90 x 62.5
F = 5625 N
Therefore, the average force exerted by seatbelts on the passenger is 5625 N.
You have to divide the pressure exerted by the air into two partial pressures: of the dry air and of the water vapor. Combining these two values gives you the parameter.
Answer:
0.75 m³/s
Explanation:
Applying,
Q = vA.................... Equation 1
Where Q = flow rate of the water, v = velocity of the water, A = area of the pipe.
From the question,
Given: v = 2.5 m/s, A = 0.3 m²
Substitute these values into equation 1
Q = 2.5(0.3)
Q = 0.75 m³/s
Hence the flow rate of water in the pipe is 0.75 m³/s