1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Elena L [17]
3 years ago
12

A dielectric material is inserted between the charged plates of a parallel-plate capacitor. Do the following quantities increase

, decrease, or remain the same as equilibrium is reestablished?
1. Charge on plates (plates remain connected to battery)
2. Electric potential energy (plates isolated from battery before inserting dielectric)
3.Capacitance (plates isolated from battery before inserting dielectric)
4. Voltage between plates (plates remain connected to battery)
5. Charge on plates (plates isolated from battery before inserting dielectric)
6. Capacitance (plates remain connected to battery)
7. Electric potential energy (plates remain connected to battery)
8. Voltage between plates (plates isolated from battery before inserting dielectric)
Physics
2 answers:
sleet_krkn [62]3 years ago
7 0

Answer:

1. increase

2. remain the same

3. increases

4. decreases

5. remain the same

6. increases

7. decreases

8. remain the same

Explanation:

a. the formula for the capacitance of a capacitor relating the capacitor and the dielectric material is express as

C=e_oA/d........equation 1

also the capacitance and the charge is related as

Q=CV.......equation 2

from equation 1 as the dielectric material is introduced, the capacitance increases, the charge also increases

2. from the equation as the dielectric material is introduced, the capacitance increases, the electric potential also remain the same

3. from

C=e_oA/d........equation 1

we conclude that the capacitance increases

4. the voltage between the plates decreases

5. the charge remain the same because capacitance is constant

6. the capacitance increases

7. the electric potential decreases

8. remain the same

Arisa [49]3 years ago
6 0

Answer 1: the charge on the plates will increase

Explanation: placing a dielectric between two charged plate increases its capacitance

C = Q/V,

If the plates remain connected then the voltage remains the same.

Therefore for an increase in capacitance charge will increase.

Answer 2: electric field potential remains the same.

Explanation: if the plates are disconnected, charge on plates remains contant while voltage varies with change in distance, electric field intensity remains constant and this is proportional to the electric potential energy.

Answer 3: capacitance increases

Explanation: introducing a dielectric between two plates causes opposite charges to be induced on the faces of the dielectric. This also reduces the p.d across the capacitor.

Answer 4: voltage remains constant.

Explanation: A connected plate has a constant voltage across its field.

Answer 5: charge remains contant.

Explanation: capacitance will increase with introduction of dielectric, p.d across the plates will drop, the charge will remain constant.

Answer 6: capacitance increases

Explanation: placing a dielectric between plates always increase the capacitance.

Answer 7: electric potential energy falls.

Answer 8: voltage between plates decreases

You might be interested in
A MEMS-based accelerometer has a mass of m = 2 grams, an equivalent spring constant of k = 5 N/m, and an equivalent damping coef
pychu [463]

Answer:

The natural frequency = 50 rad/s = 7.96 Hz

Damping ratio = 0.5

Explanation:

The natural frequency is calculated in this manner

w = √(k/m)

k = spring constant = 5 N/m

m = mass = 2 g = 0.002 kg

w = √(5/0.002) = 50 rad/s

w = 2πf

50 = 2πf

f = 50/(2π) = 7.96 Hz

Damping ratio = c/[2√(mk)] = 0.1/(2 × √(5 × 0.002)) = 0.5

5 0
3 years ago
Scientists are making plans to put a probe in orbit around Earth. They want the probe to enter the orbit shown below.
iris [78.8K]

An arrow which shows the direction that the probe should be moving in order for it to enter the orbit is X.

<h3>What is an orbit?</h3>

An orbit can be defined as the curved path through which a astronomical (celestial) object such as planet Earth, in space move around a Moon, Sun, planet or star.

In this scenario, if the scientists want the probe to enter the orbit they should ensure that probe moves in direction X. This ultimately implies that, the probe must move in the same direction as the orbit, in order to enter it.

Read more on orbit here: brainly.com/question/18496962

#SPJ1

6 0
2 years ago
Read 2 more answers
1) draw a simple circuit with a voltage source and four resistors wired in series
Norma-Jean [14]

Answer:

1)

In this circuit (see attachment #1), we have:

- A voltage source: in this case, we choose a battery. A voltage source is a device producing an electromotive force (in a battery, this is done by means of a chemical reaction), which is responsible for "pushing" the electrons along the circuit and creating a current. The electromotive force (emf) of the battery is also called voltage, and it is indicated with the letter V.

- Four resistors: a resistor is a device which opposes to the flow of current. The property that describes by "how much" the resistor "opposes" to the flow of current is called "resistance", and it is indicated with the letter R.

- In this circuit, the 4 resistors are in series. Resistors are said to be in series when they are connected along the same branch of the circuit, so that the same current flow across each of them.

- For resistors in series, the equivalent resistance of the circuit is given by the sum of the individual resistances:

R=R_1+R_2+...+R_n

2)

In this circuit (see attachment #2), we have:

- A voltage source: as before, we have chosen a battery, providing an electromotive  force to the circuit

- Three resistors wired in parallel. Resistors are said to be connected in parallel when they are connected along different branches, but with their terminals connected to the same point, so that each of them has the same potential difference across it.

- For resistors in parallel, the equivalent resistance of the circuit is calculated using the formula:

\frac{1}{R}=\frac{1}{R_1}+\frac{1}{R_2}+...+\frac{1}{R_n}

3)

In this circuit (see attachment #3), we have:

- A voltage source (again, we have choosen a battery)

- Three resistors, of which:

-- 2 of them are connected in parallel with each other

-- the 3rd one it is in series with the first two

If we call R_1,R_2 the resistances of the first 2 resistors in parallel, their equivalent resistance is:

\frac{1}{R_{12}}=\frac{1}{R_1}+\frac{1}{R_2}\\\rightarrow R_{12}=\frac{R_1 R_2}{R_1+R_2}

Then, these two resistors are connected in series with resistor R_3; and so, the total resistance of this circuit will be:

R=R_{12}+R_3=\frac{R_1R_2}{R_1+R_2}+R_3=\frac{R_1R_2+R_3(R_1+R_2)}{R_1+R_2}

4)

In this circuit (see attachment #4), we have:

- A voltage source (again, a battery)

- We have 6 resistors, which are arranged as follows:

-- Two branches each containing 3 resistors

-- The two branches are in parallel with each other

So, the total resistance of the two branches are:

R_{123}=R_1+R_2+R_3

R_{456}=R_4+R_5+R_6

And since the two branches are in parallel, their total resistance will be:

\frac{1}{R}=\frac{1}{R_{123}}+\frac{1}{R_{456}}\\\rightarrow R=\frac{R_{123}R_{456}}{R_{123}+R_{456}}=\frac{(R_1+R_2+R_3)(R_4+R_5+R_6)}{R_1+R_2+R_3+R_4+R_5+R_6}

4 0
3 years ago
What is the eulerian description of fluid motion how does it differ from the lagrangian description?
Alex_Xolod [135]

Kinematics : Study of motion

Fluid kinematics : study of how fluid flows and how to describe its motion.

There are two ways to describe fluid motion

one is Eulerian, where the variations are described at all fixed stations as a function of time.

the other is Lagrangian, in which one follows all fluid particles and describes the variations around each fluid particle along its trajectory.

<u>DIFFRENCE  BETWEEN  LAGRANGIAN AND EULERIAN:</u>

1.Both Lagrangian and Eulerian describes time variation.

2. Eulerian describes the rate of change in one point of space

Lagrangian descries rate of change of a property of material system.

To know more about the Lagrangian and Eulerian :\brainly.com/question/14944792

#SPJ4

3 0
2 years ago
Lillle is running. She increases her initial speed of 30 km/h to 40 km/h so she
Alex777 [14]

Answer

200km {h}^{ - 2}

Explanation

Acceleration =  \frac{final \:  \:  \: velocity - initial \:  \: velocity }{time}  \\  =  \frac{(40 - 30)km {h}^{ - 1} }{0.05h}  \\  =  \frac{10}{0.05}  \\  = 200km {h}^{ - 2}

Hope this helps you.

Let me know if you have any other questions :-):-)

6 0
3 years ago
Read 2 more answers
Other questions:
  • calculate the period of a wave whose frequency is 5 Hz and whose wavelength is 1 cm give your answer in decimal form
    9·2 answers
  • “doing the wave” is a common activity in large football stadiums. what type of wave is this?
    5·1 answer
  • Barometric pressure has been dropping all day. what weather conditions will most likely occur? calm weather stormy weather hot w
    7·2 answers
  • Sam has been working to improve his muscular fitness. He jumps rope and trains with weights. What will most likely be the result
    12·2 answers
  • Liz rushes down onto a subway platform to find her train already departing. she stops and watches the cars go by. each car is 8.
    5·1 answer
  • A ball rolls at a speed of 6cm/s how far does the ball roll in 40 seconds ? ____cm
    13·1 answer
  • Describe what happens to water waves when they strike a flat surface?
    13·1 answer
  • NEED HELP PLEASE !!!!!!!!!!!!!!!!!!!!!!!!!!
    10·1 answer
  • 2. Only power tools with a 3-wire cord with
    13·1 answer
  • E) The number of moles of each gas produced at the electrodes is the same.
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!