The Rutherford experiment proved the Thomson “plum-pudding” model of the atom to be essentially correct did not give the results described and is denoted as option A.
<h3>What is Thomson “plum-pudding” model?</h3>
This model was proposed by J.J Thomson in which referred an atom as a sphere of positive charge, and negatively charged electrons are embedded in it to balance the total positive charge.
This model was incorrect and the Rutherford atomic model was adopted in which he described the electrons orbits about a tiny positive nucleus.
The nucleus contains protons and neutrons instead thereby making it the correct choice.
Read more about Atom here brainly.com/question/6258301
#SPJ1
The options include the following:
a.The Rutherford experiment proved the Thomson “plum-pudding” model of the atom to be essentially correct.
b.The Rutherford experiment was useful in determining the nuclear charge on the atom.
c.Milikan’s oil-drop experiment showed that the charge on any particle was a simple multiple of the charge on the electron.
d.The electric discharge tube proved that electrons have a negative charge
The required volume of water to make the dilute solution of 0.5 M is 188 mL.
<h3>How do we calculate the required volume?</h3>
Required volume of water to dilute the stock solution will be calculated by using the below equation as:
M₁V₁ = M₂V₂, where
- M₁ & V₁ are the molarity and volume of stock solution.
- M₂ & V₂ are the molarity and volume of dilute solution.
On putting values from the question to the above equation, we get
V₂ = (2)(47) / (0.5) = 188mL
Hence required volume of water is 188 mL.
To know more about volume & concentration, visit the below link:
brainly.com/question/7208546
#SPJ1
Radio waves.
From lowest to highest it is radio wave, microwave, infrared, visible light, ultraviolet, x ray, and then gamma.
(2.5)(10000)=25000
25000 * 3785
ML = 94635294.6 milliliters