150*4=600
So the answer is 600
Answer:
E = 13.2 kWh
, Cost = $ 10.8
Explanation:
We can look for the consumed energy from the expression of the power
P = W / t
The work is equal to the variation of the kinetic energy, for which
P = E / t
E = P t
look for the energy consumed in one day and multiply by the days of the month in the month
E = 110 4 30
E = 13200 W h
E = 13.2 kWh
the cost of this energy is
Cost = 0.9 12
Cost = $ 10.8
To answer the following questions for this specific problem:
a. 11.48 secs
b. Vp = a*t*3.6 =
3*11.48*3.6 = 124.0 km/h
<span>c. 9.1 secs. </span>
I am hoping that this answer has satisfied your query about
and it will be able to help you.
Answer:
1. 0.574 kJ/kg
2. 315.7 MW
Explanation:
1. The mechanical energy per unit mass of the river is given by:


Where:
Ek is the kinetic energy
Ep is the potential energy
v is the speed of the river = 3 m/s
g is the gravity = 9.81 m/s²
h is the height = 58 m

Hence, the total mechanical energy of the river is 0.574 kJ/kg.
2. The power generation potential on the river is:

Therefore, the power generation potential of the entire river is 315.7 MW.
I hope it helps you!
Answer:
Not possible
Explanation:
Unless there's some extra external force to keep both particles at rest after the collision, the momentum must be conserved before and after the collision.
So before the collision, 1 particle is at rest, 1 not -> total momentum is non-zero
After the collision, both particles are at rest -> total momentum is zero which is different from before.
Therefore this is not possible.