The number of protons in the element.
Answer:
Bounce 1 , pass 3, emb2
Explanation:
(By the way I am also doing that question on College board physics page) For the Bounce arrow, since it bumps into the object and goes back, it means now it has a negative momentum, which means a larger momentum is given to the object. P=mv, so the velocity is larger for the object, and larger velocity means a larger kinetic energy which would result in a larger change in the potential energy. Since K=0.5mv^2=U=mgh, a larger potential energy would have a larger change in height which means it has a larger angle θ with the vertical line. Comparing with the "pass arrow" and the "Embedded arrow", the embedded arrow gives the object a larger momentum, Pi=Pf (mv=(M+m)V), it gives all its original momentum to the two objects right now. (Arrow and the pumpkin), it would have a larger velocity. However for the pass arrow, it only gives partial of its original momentum and keeps some of them for the arrow to move, which means the pumpkin has less momentum, means less velocity, and less kinetic energy transferred into the potential energy, and means less change in height, less θangle. So it is Bounce1, pass3, emb2.
Answer:
Wavelength
Explanation:
Wavelength is the distance between two corresponding consecutive phases of a waveform. It is usually represented by λ in the mathematical expressions.
A continuous propagating wave repeats its wavelength over the distance.
A wave has crest and trough with respect to time and space.
Wave is defined as a disturbance of any parameter repeated in a cyclic manner over the given time.
Answer:
143 °
Explanation:
a ) If d be the distance between slits , λ be wavelength of light used and at angle θ nth dark fringe is formed then
d sinθ = ( 2n+1) λ/2
for first dark fringe
d sinθ = λ/2
d /λ = 1/ 2 sinθ
1 / 2 sin15
= 1.93
b )
For intensity of fringe at angle θ, the relation is
I = I₀ cos²θ
I / I₀ = cos²θ/2
Given I / I₀ =0. 1
0.1 = cos²θ/2
θ/2 = 71.5
θ = 143 °