Answer:
The pressure of the air molecules inside the pen cap increases and the volume occupied by the air decreases such that the combined volume occupied by the pen cap and the air volume reduces while the combined mass of the pen cap and the air molecules remain the same
Given that density = The mass/Volume, we have that the density varies inversely as the volume, and as the volume reduces, the density increases
Upon squeezing, therefore, as the new combined density of the pen cap and the air molecules rises to more than the density of the water in the bottle, then, the pen cap air molecule is relatively more denser than the water, which will result in the pen cap sinking to the bottom of the bottle
Explanation:
Let's just assume that you throw the ball with an initial speed of 2 m/s instead of dropping it like free falling.
a=9.81 m/s^2
Vi= 2 m/s
t= 3 x
we use the formula
d = (Vi)(t) + (1/2)(a)(t)^2
d= (2)(3) + (1/2)(9.81)(9)
d=50.145 m
Answer:
40 m/s due north
Explanation:
Consider that the south direction a negative Y axis and north direction as + Y axis
v1 = 20 m/s South = 20 (-j) m/s
v2 = 20 m/s North = 20 j m/s
Change in velocity = v2 - v1 = 20 j - 20 (-j) = 40 j m/s
So, change in velocity is 40 m/s due north.
i honestly don't even know but yahoo answers says :
Impulse causes momentum to change, which means:
Impulse = change in momentum, or in equation form:
F∆t = (mv)2 – (mv)1
so p (impulse)= mass times velocity so the mass is 2,000kg and the velocity is 12,000N/5s.
speed is basically velocity so you have to calculate how many newtons per one second, so 12,000/5s-- just divide the numerator and denominator by 5. Also, velocity and speed are measured in N/s.