Answer:
<em>(C) If the composition of a mixture appears uniform no matter where you sample it, is homogeneous; sand on a beach *IS HETEROGENEOUS* because when you look at it up close, you can identify different types of particles, such as sand, shells, and organic matter.</em>
Explanation:
<em>(A) Pure Water is a collection of solely H2O molecules therefore Pure Water is classified as a *Compound*.</em>
<em>(B) Table Salt is NOT a heterogeneous mixture because the particles of salt can't be separated, and it is a *Pure Substance*.</em>
<em>(D) Maple Syrup is a homogeneous mixture because the solutes are fully dissolved and not easily identified. In other words, Maple Syrup is uniform throughout.</em>
<em>-Hope this helps!</em>
<em />
Answer: 60
Explanation: if u hit it it will have impact and the impact added 10n
The question is incomplete. The mass of the object is 10 gram and travelling at a speed of 2 m/s.
Solution:
It is given that mass of object before explosion is,m = 10 g
Speed of object before explosion, v = 2 m/s
Let be the masses of the three fragments.
Let be the velocities of the three fragments.
Therefore, according to the law of conservation of momentum,
So the x- component of the velocity of the m2 fragment after the explosion is,
∴
Answer:
52.5°C
Explanation:
The final enthalpy is determined from energy balance where initial enthalpy and specific volume are obtained from A-12 for the given pressure and state
mh1 + W = mh2
h2 = h1 + W/m
h1 + Wα1/V1
242.9 kJ/kg + 2.35.0.11049kJ/ 0.35/60kg
=287.4 kJ/kg
From the final enthalpy and pressure the final temperature is obtained A-13 using interpolation
i.e T2 = T1 + T2 -T1/h2 -h1(h2 - h1)
= 50°C + 60 - 50/295.15 - 284.79
(287.4 - 284.79)°C
= 52.5°C