Answer: Our required probability is 0.83.
Step-by-step explanation:
Since we have given that
Number of dices = 2
Number of fair dice = 1
Probability of getting a fair dice P(E₁) = 
Number of unfair dice = 1
Probability of getting a unfair dice P(E₂) = 
Probability of getting a 3 for the fair dice P(A|E₁)= 
Probability of getting a 3 for the unfair dice P(A|E₂) = 
So, we need to find the probability that the die he rolled is fair given that the outcome is 3.
So, we will use "Bayes theorem":

Hence, our required probability is 0.83.
Answer:
D: no solution
...because none of the answers work for both of the equations when you plug in the x and y values
Answer:
Hello,
Step-by-step explanation:
Q.5(b) The population {(P) in millions} of a country is estimated by the function, P=125e0.035t, t = time measured in years since 1990. (a) what is the population expected to equal in year 2000 (b) determine the expression for the instantaneous rate of change in the population (c) what is the instantaneous rate of change in the population expected to equal in year 2000.
