Answer:
21.86582KJ
Explanation:
The graphical form of the Arrhenius equation is shown on the image attached. Remember that in the Arrhenius equation, we plot the rate constant against the inverse of temperature. The slope of this graph is the activation energy and its y intercept is the frequency factor.
Applying the equation if a straight line, y=mx +c, and comparing the given equation with the graphical form of the Arrhenius equation shown in the image attached, we obtain the activation energy of the reaction as shown.
Answer:
carbon and silicon
Explanation:
Various groups of elements in the periodic table have different outermost shell electron configurations. Actually, elements are classified into groups on the basis of the number of electrons on the outermost shell of those elements. All elements with the same number of electrons on their outermost shell belong to the same group in the periodic table.
For elements in group 14, they all have four electrons on their outermost shell. Their general outer electron configuration is ns2 np2 as shown in the question. Two prominent members of this group are carbon and silicon. This ns2 np2 is the ground state outer electron configuration of all group 14 elements in the periodic table.
Answer:
See Explanation
Explanation:
Metallic bonds involve attraction between electrons and positively charged metal ions. The metals are ionized and electrons form a sea of valence electrons. These loosely bound electrons surround the nuclei of the metals.
The presence of this sea of electrons explains the fact that metals conduct electricity and heat due to the free valence electrons.
Due to the nature of the bonding between metal atoms,metals are malleable and ductile.
Due to the strong electrostatic interaction between metal ions and electrons, the metallic bond is very strong and is very difficult to break thereby accounting for the greater strength of metals as the size of the metallic ion decreases.
Kinetic energy is energy possessed by a body by virtue of its movement.
Potential energy is the energy possessed by a body by virtue of its position or state.