Chemical reactions are basically divided into two major classes depending on whether the reaction lose energy or gain energy from the environment during the course of the reaction. The two classes of reaction are exothermic and endothermic reaction.
An exothermic reaction is a type of reaction in which the reaction system lose energy to the environment and thus, the energy content of the reactants is more than that of the product formed. Because of this, the enthapyl change of an exothermic reaction is always negative.
An endothermic reaction is a type of reaction in which the reaction system absorb energy from the environment. Thus, the energy contents of the products is always higher than that of the reactants and the enthapyl change of the reaction is always positive. During the course of the reaction, the reaction container is usually cold to the touch because energy is been absorbed from the environment.
Answer:
shorter wavelength = alpha wave
Explanation:
Given that,
The alpha wave has a frequency of 5 Hz and the beta wave has a frequency of 2 Hz.
We need to compare the wavelengths of these two waves.
For alpha wave,

For beta wave,

From the above calculations, we find that the wavelength of the alpha wave is shorter than the wavelength of the beta wave.
Answer:
Groups 14, 15, and 16 have 2,3, and 4 electrons in the p sublevel (p sublevel has 3 "spaces" AKA orbitals), because Hunds says one in each orbital before doubling up if you had 2 electrons, group 14, they would both be in the first orbital, with 3 electrons, group 15, two in the first orbital one in the 2nd none in the 3rd. With 4 electrons, group 16, then you would have 2 in the first 2 orbitals and NONE in the 3rd.
Explanation:
If you are in group 13 you only have 1 electron so it can only be in one orbital. with group 17, you have 5 electrons, so 2 in the first 2 in the second and 1 in the 3rd, correct for Hunds rule anyway. Noble gasses, group 18, have 6 elecctrons, so every orbital is full any way you look at it.
Explanation:
32
2H
2
+O
2
→2H
2
O
Molecular mass of H
2
=2 g/mol
Molecular mass of O
2
=32 g/mol
From the balanced chemical equation,
2×2=4 g of hydrogen requires 32 g of Oxygen to react completely
alternative acids are more cost-effective and allow for flavor expression through nontraditional methods and ingredients, making for increased versatility.