Answer:
Mass = 18.9 g
Explanation:
Given data:
Mass of Al₂O₃ formed = ?
Mass of Al = 10.0 g
Solution:
Chemical equation:
4Al + 3O₂ → 2Al₂O₃
Number of moles of Al:
Number of moles = mass/molar mass
Number of moles = 10.0 g/ 27 g/mol
Number of moles = 0.37 mol
Now we will compare the moles of Al and Al₂O₃.
Al : Al₂O₃
4 : 2
0.37 : 2/4×0.37 = 0.185 mol
Mass of Al₂O₃:
Mass = number of moles × molar mass
Mass = 0.185 mol × 101.9 g/mol
Mass = 18.9 g
Answer:
C
Explanation:
The enthalpy of the reactants is greater than that of the products.
Answer: 3p Orbitals
Explanation:
Electrons present in the 3p orbitals are farthest from the nucleus. Therefore, the electrons present in the 3p orbital will be shielded by the electrons present in the inner orbitals. Hence, 3p orbital in sulfur is most shielded from the nuclear charge".
Answer: 122 moles
Procedure:
1) Convert all the units to the same unit
2) mass of a penny = 2.50 g
3) mass of the Moon = 7.35 * 10^22 kg (I had to arrage your numbers because it was wrong).
=> 7.35 * 10^22 kg * 1000 g / kg = 7.35 * 10^ 25 g.
4) find how many times the mass of a penny is contained in the mass of the Moon.
You have to divide the mass of the Moon by the mass of a penny
7.35 * 10^ 25 g / 2.50 g = 2.94 * 10^25 pennies
That means that 2.94 * 10^ 25 pennies have the mass of the Moon, which you can check by mulitiplying the mass of one penny times the number ob pennies: 2.50 g * 2.94 * 10^25 = 7.35 * 10^25.
5) Convert the number of pennies into mole unit. That is using Avogadros's number: 6.022 * 10^ 23
7.35 * 10^ 25 penny * 1 mol / (6.022 * 10^ 23 penny) = 1.22* 10^ 2 mole = 122 mol.
Answer: 122 mol