Decay is a type of degradation reaction and thus is considered a first order reaction. thus the formula goes like this.
rate constant= 0.693/half life
so here...
rate constant= 0.693/1620 year^-1
<h3>
Answer:</h3>
0.387 J/g°C
<h3>
Explanation:</h3>
- To calculate the amount of heat absorbed or released by a substance we need to know its mass, change in temperature and its specific heat capacity.
- Then to get quantity of heat absorbed or lost we multiply mass by specific heat capacity and change in temperature.
- That is, Q = mcΔT
in our question we are given;
Mass of copper, m as 95.4 g
Initial temperature = 25 °C
Final temperature = 48 °C
Thus, change in temperature, ΔT = 23°C
Quantity of heat absorbed, Q as 849 J
We are required to calculate the specific heat capacity of copper
Rearranging the formula we get
c = Q ÷ mΔT
Therefore,
Specific heat capacity, c = 849 J ÷ (95.4 g × 23°C)
= 0.3869 J/g°C
= 0.387 J/g°C
Therefore, the specific heat capacity of copper is 0.387 J/g°C
Answer:
6.00 moles of sodium permanganate
Explanation:
Let us attempt to count the number of atoms present in sodium perchlorate. The formula of the compound is NaClO4
Sodium atoms - 1
Chlorine atoms - 1
Oxygen atoms -4
Total number of atoms = 6
Among the options, only KMnO4 also has six atoms. One atom of potassium, one atom of manganese and four atoms of oxygen.