Answer:
1.24 x 10 to the 5 ev = 124,000 ev its B
Explanation:
E = hc/lambda = 1.24 ev-micrometer/1.0x10 to the -5 micrometers = 1.24 x 10 to the 5 ev = 124,000 ev
h = Planck's constant = 6.626 × 10 to the -34 joule·s
c = speed of light = 2.998 × 10 to the 8 m/s
lambda is the given wavelength
E is the desired photon energy
Answer:
0.37 m
Explanation:
The angular frequency, ω, of a loaded spring is related to the period, T, by

The maximum velocity of the oscillation occurs at the equilibrium point and is given by

A is the amplitude or maximum displacement from the equilibrium.

From the the question, T = 0.58 and A = 25 cm = 0.25 m. Taking π as 3.142,

To determine the height we reached, we consider the beginning of the vertical motion as the equilibrium point with velocity, v. Since it is against gravity, acceleration of gravity is negative. At maximum height, the final velocity is 0 m/s. We use the equation

is the final velocity,
is the initial velocity (same as v above), a is acceleration of gravity and h is the height.


Answer
Se togli 15 mph da 95 e 15, capisci quanto tempo la macchina 2 fa da 0 mph a 70 mph. La prima macchina fa da 0 mph a 60 mph in 5 secondi, e la seconda da 0 mph a 70 mph in 5 secondi. Risulta essere più veloce la seconda macchina. Spero di essere stato utile :)
Explanation:
The answer is 2Hz
Using the formula f= 1/T we can plug in .5 for T and solve for frequency.