Relatively hot objects emit visible light.
Some examples:
==> the wire coils in the toaster;
==> the spoon that you stuck in the flame on the stove;
==> the fine wire in the lightbulb when current goes through it.
VERY radioactive objects also do that. But if you're actually
standing there watching an object that's THAT radioactive,
then you're in big trouble.

Explanation:
Natural length of a spring is
. The spring is streched by
. The resultant energy of the spring is
.
The potential energy of an ideal spring with spring constant
and elongation
is given by
.
So, in the current problem, the natural length of the spring is not required to find the spring constant
.

∴ The spring constant of the spring = 
Answer:
The refractive index of glass, 
Solution:
Brewster angle is the special case of incident angle that causes the reflected and refracted rays to be perpendicular to each other or that angle of incident which causes the complete polarization of the reflected ray.
To determine the refractive index of glass:
(1)
where
= refractive index of glass
= refractive index of glass
Now, using eqn (1)



Answer:
At Saturn's center is a dense core of metals like iron and nickel surrounded by rocky material and other compounds solidified by the intense pressure and heat. It is enveloped by liquid metallic hydrogen inside a layer of liquid hydrogen—similar to Jupiter's core but considerably smaller
Explanation:
Answer: Descartes was more of speed which defers from modern day velocity.
Explanation:
Descartes law if conservation referred or defined “motion” rather than “momentum” as what is obtainable in today's world as ”speed” the rate at which something moves rather than “velocity” which is a product of speed and direction. So in conclusion Descartes was more of speed which defers from modern day velocity.