I can't see that cube from here.
But if the length of the side of the cube is ' K ' units,
then the surface area of the cube is 6K² units², and
the volume of the cube is K³ units³.
The ratio of the surface area to the volume is
(6K² units²) / (K³ units³) = (6) / (K units) .
So for example, if the side of the cube is 2 inches, then
the ratio of surface area to volume is "3 per inch".
That's the answer. I did the whole thing in order to earn
the points, but I don't expect you to understand much of it,
because I see from your username that you suck at math.
I'm sorry you decided that. Now that you've put up the
brick wall, it'll be even harder for any math to find its way
in there, and you'll miss out on a lot of the fun.
Answer:
![\Delta x=245\ mm](https://tex.z-dn.net/?f=%5CDelta%20x%3D245%5C%20mm)
Explanation:
Given:
- spring constant of the spring attached to the input piston,
![k=1600\ N.m^{-1}](https://tex.z-dn.net/?f=k%3D1600%5C%20N.m%5E%7B-1%7D)
- mass subjected to the output plunger,
![m=40\ kg](https://tex.z-dn.net/?f=m%3D40%5C%20kg)
<u>Now, the force due to the mass:</u>
![F=m.g](https://tex.z-dn.net/?f=F%3Dm.g)
![F=40\times 9.8](https://tex.z-dn.net/?f=F%3D40%5Ctimes%209.8)
![F=392\ N](https://tex.z-dn.net/?f=F%3D392%5C%20N)
<u>Compression in Spring:</u>
![\Delta x=\frac{F}{k}](https://tex.z-dn.net/?f=%5CDelta%20x%3D%5Cfrac%7BF%7D%7Bk%7D)
![\Delta x=\frac{392}{1600}](https://tex.z-dn.net/?f=%5CDelta%20x%3D%5Cfrac%7B392%7D%7B1600%7D)
![\Delta x=0.245\ m](https://tex.z-dn.net/?f=%5CDelta%20x%3D0.245%5C%20m)
or
![\Delta x=245\ mm](https://tex.z-dn.net/?f=%5CDelta%20x%3D245%5C%20mm)
As we know that :
![\begin{gathered}\large{\boxed{\sf{P \: = \: \dfrac{1}{f}}}} \\ \\ \rightarrow {\sf{P \: = \: \dfrac{1}{-25}}}\end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%5Clarge%7B%5Cboxed%7B%5Csf%7BP%20%5C%3A%20%3D%20%5C%3A%20%5Cdfrac%7B1%7D%7Bf%7D%7D%7D%7D%20%5C%5C%20%5C%5C%20%5Crightarrow%20%7B%5Csf%7BP%20%5C%3A%20%3D%20%5C%3A%20%5Cdfrac%7B1%7D%7B-25%7D%7D%7D%5Cend%7Bgathered%7D)
Power, is in Meter. So divide focal length by 100
![\begin{gathered}\rightarrow {\sf{P \: = \: \dfrac{1}{\dfrac{-25}{100}}}} \\ \\ \rightarrow {\sf{P \: = \: \dfrac{-100}{25}}} \\ \\ \rightarrow {\sf{P \: = \:- 4}} \\ \\ \underline{\sf{\therefore \: Power \: of \: Concave \: lens \: is \: - \: 4D}}\end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%5Crightarrow%20%7B%5Csf%7BP%20%5C%3A%20%3D%20%5C%3A%20%5Cdfrac%7B1%7D%7B%5Cdfrac%7B-25%7D%7B100%7D%7D%7D%7D%20%5C%5C%20%5C%5C%20%5Crightarrow%20%7B%5Csf%7BP%20%5C%3A%20%3D%20%5C%3A%20%5Cdfrac%7B-100%7D%7B25%7D%7D%7D%20%5C%5C%20%5C%5C%20%5Crightarrow%20%7B%5Csf%7BP%20%5C%3A%20%3D%20%5C%3A-%204%7D%7D%20%5C%5C%20%5C%5C%20%5Cunderline%7B%5Csf%7B%5Ctherefore%20%5C%3A%20Power%20%5C%3A%20of%20%5C%3A%20Concave%20%5C%3A%20lens%20%5C%3A%20is%20%5C%3A%20-%20%5C%3A%204D%7D%7D%5Cend%7Bgathered%7D)
Designing warning and evacuation systems could be a step in a plan designed to mitigate the negative impacts of a natural hazard.
Answer:
oxygen
Explanation:
as it is in the air it can't be depleted or used up