Answer: A suspension is a heterogeneous mixture in which some of the particles settle out of the mixture upon standing. The particles in a suspension are far larger than those of a solution, so gravity is able to pull them down out of the dispersion medium (water).
Explanation:
Answer:
sound waves
Explanation:
jejehwherrbjwhsbwwbdbehej
Answer:
In the table, 1=46.7 °C, 1=165 J, 2=819 J, 3=1510 J, and 4=2830 J.
Other experiments determine that the material has a temperature of fusion of
fusion =235 °C and a temperature of vaporization of vapor=481 °C.
If the sample of material has a mass of =8.60 g, calculate the specific heat when this material is a solid, and when it is liquid, l
Answer:
1.5 m
Explanation:
Length. L = 12 m
Width, W = 16 m
Area, A = 12 x 16 = 192 m^2
Let the width of pavement be d.
The new length, L' = 12 + 2d
the new width, W' = 16 + 2d
New Area, A' = L' x W' = (12 + 2d)(16 + 2d) = 192 + 56 d + 4d^2
Difference in area = A' - A
285 = 192 + 56 d + 4d^2 - 192
93 = 56 d + 4d^2
4d^2 + 56 d - 93 = 0

\
d = 1.5 m
Thus, the width of the pavement is 1.5 m.
Answer:
ΔP = 14.5 Ns
I = 14.5 Ns
ΔF = 5.8 x 10³ N = 5.8 KN
Explanation:
The mass of the ball is given as 0.145 kg in the complete question. So, the change in momentum will be:
ΔP = mv₂ - mv₁
ΔP = m(v₂ - v₁)
where,
ΔP = Change in Momentum = ?
m = mass of ball = 0.145 kg
v₂ = velocity of batted ball = 55.5 m/s
v₁ = velocity of pitched ball = - 44.5 m/s (due to opposite direction)
Therefore,
ΔP = (0.145 kg)(55.5 m/s + 44.5 m/s)
<u>ΔP = 14.5 Ns</u>
The impulse applied to a body is equal to the change in its momentum. Therefore,
Impulse = I = ΔP
<u>I = 14.5 Ns</u>
the average force can be found as:
I = ΔF*t
ΔF = I/t
where,
ΔF = Average Force = ?
t = time of contact = 2.5 ms = 2.5 x 10⁻³ s
Therefore,
ΔF = 14.5 N.s/(2.5 x 10⁻³ s)
<u>ΔF = 5.8 x 10³ N = 5.8 KN</u>