1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Elina [12.6K]
2 years ago
8

Suppose you are working in an insurance company as a statistician. Your manager asked you to check police records of car acciden

ts and out of 576 accidents you selected randomly, teenagers were at the wheel in 120 of them. (a) Construct a 95% confidence interval for the percentage of all auto accidents that involve teenage drivers. (b) Explain your findings to your manager. (c) Before you were hired in the company, the percentage of teenagers who where involved in car accidents was 18%. Your manager wants you to see if the percentage of teenagers has changed since you join the company. Perform an appropriate hypothesis test using α = 0.05 and Interpret your results to your manager. (d) Use α = 0.1 and repeat part (c).
Mathematics
1 answer:
pochemuha2 years ago
4 0

Answer:

(a) 95% confidence interval for the percentage of all car accidents that involve teenage drivers is [0.177 , 0.243].

(b) We are 95% confident that the percentage of all car accidents that involve teenage drivers will lie between 17.7% and 24.3%.

(c) We conclude that the the percentage of teenagers has not changed since you join the company.

(d) We conclude that the the percentage of teenagers has changed since you join the company.

Step-by-step explanation:

We are given that your manager asked you to check police records of car accidents and out of 576 accidents you selected randomly, teenagers were at the wheel in 120 of them.

(a) Firstly, the pivotal quantity for 95% confidence interval for the population proportion is given by;

                        P.Q. = \frac{\hat p-p}{\sqrt{\frac{\hat p(1-\hat p)}{n} }}  ~ N(0,1)

where, \hat p = sample proportion teenage drivers = \frac{120}{576} = 0.21

           n = sample of accidents = 576

           p = population percentage of all car accidents

<em>Here for constructing 95% confidence interval we have used One-sample z proportion statistics.</em>

So, 95% confidence interval for the population population, p is ;

P(-1.96 < N(0,1) < 1.96) = 0.95  {As the critical value of z at 2.5% level

                                                     of significance are -1.96 & 1.96}  

P(-1.96 < \frac{\hat p-p}{\sqrt{\frac{\hat p(1-\hat p)}{n} }} < 1.96) = 0.95

P( -1.96 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} }} < {\hat p-p} < 1.96 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} }} ) = 0.95

P( \hat p-1.96 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} }} < p < \hat p+1.96 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} }} ) = 0.95

<u>95% confidence interval for p</u> = [\hat p-1.96 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} }} , \hat p+1.96 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} }}]

  = [ 0.21-1.96 \times {\sqrt{\frac{0.21(1-0.21)}{576} }} , 0.21+1.96 \times {\sqrt{\frac{0.21(1-0.21)}{576} }} ]

  = [0.177 , 0.243]

Therefore, 95% confidence interval for the percentage of all car accidents that involve teenage drivers is [0.177 , 0.243].

(b) We are 95% confident that the percentage of all car accidents that involve teenage drivers will lie between 17.7% and 24.3%.

(c) We are also provided that before you were hired in the company, the percentage of teenagers who where involved in car accidents was 18%.

The manager wants to see if the percentage of teenagers has changed since you join the company.

<u><em>Let p = percentage of teenagers who where involved in car accidents</em></u>

So, Null Hypothesis, H_0 : p = 18%    {means that the percentage of teenagers has not changed since you join the company}

Alternate Hypothesis, H_A : p \neq 18%    {means that the percentage of teenagers has changed since you join the company}

The test statistics that will be used here is <u>One-sample z proportion statistics</u>;

                              T.S.  =  \frac{\hat p-p}{\sqrt{\frac{\hat p(1-\hat p)}{n} }}  ~ N(0,1)

where, \hat p = sample proportion teenage drivers = \frac{120}{576} = 0.21

           n = sample of accidents = 576

So, <u><em>test statistics</em></u>  =  \frac{0.21-0.18}{\sqrt{\frac{0.21(1-0.21)}{576} }}  

                              =  1.768

The value of the sample test statistics is 1.768.

Now at 0.05 significance level, the z table gives critical value of -1.96 and 1.96 for two-tailed test. Since our test statistics lies within the range of critical values of z, so we have insufficient evidence to reject our null hypothesis as it will not fall in the rejection region due to which <u>we fail to reject our null hypothesis</u>.

Therefore, we conclude that the the percentage of teenagers has not changed since you join the company.

(d) Now at 0.1 significance level, the z table gives critical value of -1.6449 and 1.6449 for two-tailed test. Since our test statistics does not lie within the range of critical values of z, so we have sufficient evidence to reject our null hypothesis as it will fall in the rejection region due to which <u>we reject our null hypothesis</u>.

Therefore, we conclude that the the percentage of teenagers has changed since you join the company.

You might be interested in
Least Common Factor of 9 42 57
AlexFokin [52]
Should be 3 

hope this helps
7 0
3 years ago
Can someone plz help me ?
nevsk [136]

Answer: x= -1, 0, 1      y= -5, -3, -1

Step-by-step explanation:

4 0
2 years ago
Can you please help me answer this question what's a+3
Inessa [10]

Answer:

a+3

Step-by-step explanation:

You cannot go any further in answering this question.  These two terms are not like terms so they cannot be combined.  Therefore, the answer is just a+3 itself.

7 0
3 years ago
Robert can complete 10 inspections in 8 hours. Which represents the unit rate for the number of inspections he completes per hou
morpeh [17]

Answer:

1.25 inspections in an hour

Step-by-step explanation:

10/8= 1.25

4 0
3 years ago
Read 2 more answers
X+y+z=12<br> 6x-2y+z=16<br> 3x+4y+2z=28<br> What does x, y, and z equal?
lianna [129]

Answer:

x = 20/13 , y = 16/13 , z = 120/13

Step-by-step explanation:

Solve the following system:

{x + y + z = 12 | (equation 1)

6 x - 2 y + z = 16 | (equation 2)

3 x + 4 y + 2 z = 28 | (equation 3)

Swap equation 1 with equation 2:

{6 x - 2 y + z = 16 | (equation 1)

x + y + z = 12 | (equation 2)

3 x + 4 y + 2 z = 28 | (equation 3)

Subtract 1/6 × (equation 1) from equation 2:

{6 x - 2 y + z = 16 | (equation 1)

0 x+(4 y)/3 + (5 z)/6 = 28/3 | (equation 2)

3 x + 4 y + 2 z = 28 | (equation 3)

Multiply equation 2 by 6:

{6 x - 2 y + z = 16 | (equation 1)

0 x+8 y + 5 z = 56 | (equation 2)

3 x + 4 y + 2 z = 28 | (equation 3)

Subtract 1/2 × (equation 1) from equation 3:

{6 x - 2 y + z = 16 | (equation 1)

0 x+8 y + 5 z = 56 | (equation 2)

0 x+5 y + (3 z)/2 = 20 | (equation 3)

Multiply equation 3 by 2:

{6 x - 2 y + z = 16 | (equation 1)

0 x+8 y + 5 z = 56 | (equation 2)

0 x+10 y + 3 z = 40 | (equation 3)

Swap equation 2 with equation 3:

{6 x - 2 y + z = 16 | (equation 1)

0 x+10 y + 3 z = 40 | (equation 2)

0 x+8 y + 5 z = 56 | (equation 3)

Subtract 4/5 × (equation 2) from equation 3:

{6 x - 2 y + z = 16 | (equation 1)

0 x+10 y + 3 z = 40 | (equation 2)

0 x+0 y+(13 z)/5 = 24 | (equation 3)

Multiply equation 3 by 5:

{6 x - 2 y + z = 16 | (equation 1)

0 x+10 y + 3 z = 40 | (equation 2)

0 x+0 y+13 z = 120 | (equation 3)

Divide equation 3 by 13:

{6 x - 2 y + z = 16 | (equation 1)

0 x+10 y + 3 z = 40 | (equation 2)

0 x+0 y+z = 120/13 | (equation 3)

Subtract 3 × (equation 3) from equation 2:

{6 x - 2 y + z = 16 | (equation 1)

0 x+10 y+0 z = 160/13 | (equation 2)

0 x+0 y+z = 120/13 | (equation 3)

Divide equation 2 by 10:

{6 x - 2 y + z = 16 | (equation 1)

0 x+y+0 z = 16/13 | (equation 2)

0 x+0 y+z = 120/13 | (equation 3)

Add 2 × (equation 2) to equation 1:

{6 x + 0 y+z = 240/13 | (equation 1)

0 x+y+0 z = 16/13 | (equation 2)

0 x+0 y+z = 120/13 | (equation 3)

Subtract equation 3 from equation 1:

{6 x+0 y+0 z = 120/13 | (equation 1)

0 x+y+0 z = 16/13 | (equation 2)

0 x+0 y+z = 120/13 | (equation 3)

Divide equation 1 by 6:

{x+0 y+0 z = 20/13 | (equation 1)

0 x+y+0 z = 16/13 | (equation 2)

0 x+0 y+z = 120/13 | (equation 3)

Collect results:

Answer:  {x = 20/13 , y = 16/13 , z = 120/13

8 0
3 years ago
Other questions:
  • Question 1(Multiple Choice Worth 5 points)
    11·2 answers
  • 4/15x equals 2/5<br> solve for x
    6·1 answer
  • A sequence is generated by an=-2n+8. What is the value of the ninth term
    13·1 answer
  • To determine whether there is a relationship between the type of school attended and verbal reasoning scores for Irish students,
    15·1 answer
  • Erin and kelly were getting manicures this week. erin gets a manicure every 4 weeks. kelly gets a manicure every 5 weeks. what i
    5·1 answer
  • What is 62 percent of 50
    5·1 answer
  • Y less than x minus 4
    11·1 answer
  • Marlena bought 1 2/3 pounds of French Roast coffee and 3 1/8 pounds of Columbian coffee and paid $31.25. Rowen bought 2 5/12 cup
    15·1 answer
  • What is the value of X in the situation
    10·2 answers
  • Use the following information to answer the question.
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!