Answer:
36x² - 9y²
Step-by-step explanation:
We see that the given expression (6x + 3y)(6x - 3y) looks just like the expression (a + b)(a - b). When multiplied out, this is a difference of squares identity that I highly recommend you memorise:
(a + b)(a - b) = a² - b²
Here, a = 6x and b = 3y, so plug these in:
(6x + 3y)(6x - 3y) = (6x)² - (3y)² = 36x² - 9y²
Answer:
The next step is draw a line connecting the point F and the point lies on ray l.
Answer:
c : they will have both saved 97
Step-by-step explanation:
7*6 = 42 + 55(base) = 97
12*6 = 71 = 25(base) =97
5x + 4y = 32 ⇒ 45x + 36y = 288
9x - 1y = 33 ⇒ <u>45x - 5y = 165</u>
<u>41y</u> = <u>123</u>
41 41
y = 3
5x + 4(3) = 32
5x + 12 = 32
<u> - 12 - 12</u>
<u>5x</u> = <u>20</u>
5 5
x = 4
(x, y) = (4, 3)
\left[x _{2}\right] = \left[ \frac{-1+i \,\sqrt{3}+2\,by+\left( -2\,i \right) \,\sqrt{3}\,by}{2^{\frac{2}{3}}\,\sqrt[3]{\left( 432\,by+\sqrt{\left( -6912+41472\,by+103680\,by^{2}+55296\,by^{3}\right) }\right) }}+\frac{\frac{ - \sqrt[3]{\left( 432\,by+\sqrt{\left( -6912+41472\,by+103680\,by^{2}+55296\,by^{3}\right) }\right) }}{24}+\left( \frac{-1}{24}\,i \right) \,\sqrt{3}\,\sqrt[3]{\left( 432\,by+\sqrt{\left( -6912+41472\,by+103680\,by^{2}+55296\,by^{3}\right) }\right) }}{\sqrt[3]{2}}\right][x2]=⎣⎢⎢⎢⎢⎡2323√(432by+√(−6912+41472by+103680by2+55296by3))−1+i√3+2by+(−2i)√3by+3√224−3√(432by+√(−6912+41472by+103680by2+55296by3))+(24−1i)√33√(432by+√(−6912+41472by+103680by2+55296by3))⎦⎥⎥⎥⎥⎤
totally answer.