1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
OlgaM077 [116]
2 years ago
15

The collision between a hammer and a nail can be considered to be approximately elastic. estimate the kinetic energy acquired by

a 10 g nail when it is struck by a 550 g hammer moving with an initial speed of 3.5 m/s.
Physics
2 answers:
Setler [38]2 years ago
6 0

Here we can use momentum conservation as in this type of collision there is no external force on it

m_1v_{1i} + m_2v_{2i} = m_1 v_{1f} + m_2v_{2f}

now here we can say

m_1 = 10 g

v_{1i} = 0

m_2 = 550 g

v_{2i} = 3.5 m/s

now here we can say

10*0 + 550 * 3.5 = 10 v_{1f} + 550 v_{2f}

192.5 = v_{1f} + 55 v_{2f}

now by coefficient of restitution

for elastic collision we know that e = 1

v_{2f} - v_{1f} = e(v_{1i} - v_{2i})

v_{2f} - v_{1f} = 0 - 3.5

now by solving the two equation

56v_{2f} = 189

v_{2f} = 3.375 m/s

also we know that

v_{1f} = v_{2f} + 3.5 = 3.375 + 3.5 = 6.875 m/s

so final speed of the nail is 6.875 m/s


belka [17]2 years ago
6 0

Answer:

0.236J

Explanation:

Given:  collision between a hammer and a nail, it is approximately elastic.a 550 g hammer moving with an initial speed of 3.5 m/s struck a 10g nail.

To Find: Kinetic Energy acquired by nail.

Solution: Let mass and initial speed of hammer be=\text{m}_{1} , \text{v}_{1i}

final speed of hammer=\text{v}_{1f}

                mass and initial speed of nail be=\text{m}_{2} , \text{v}_{2i}

                final speed of nail=\text{v}_{2f}

momentum before collision

\text{m}_{1} \text{v}_{1i}  + \text{m}_{2} \text{v}_{2i}

momentum after collision

\text{m}_{1} \text{v}_{1f}  + \text{m}_{2} \text{v}_{2f}

as collision is elastic momentum is conserved

momentum before collision = momentum after collision

\text{m}_{1} \text{v}_{1i} + \text{m}_{2} \text{v}_{2i} = \text{m}_{1} \text{v}_{1f} + \text{m}_{2} \text{v}_{2f}

as nail was at rest initially , \text{v}_{2i} = 0

\text{m}_{1} v_{1i}=\text{m}_{1} v_{1f} +\text{m}_{2} v_{2f}

\text{m}_{1}(\text{v}_{1i} -\text{v}_{1f}) = m_{2} v_{2f}

\frac{\text{m}_{1}}{\text{m}_{2}} = \frac{\text{v}_{2f}^2}{\text{v}_{1i}-\text{v}_{1f}}

kinetic energy before collision

\frac{1}{2}\text{m}_{1}\text{v}_{1i}^{2} +\frac{1}{2}\text{m}_{2}\text{v}_{2i}^{2}

kinetic energy after collision

\frac{1}{2}\text{m}_{1}\text{v}_{1f}^{2} +\frac{1}{2}\text{m}_{2}\text{v}_{2f}^{2}

As in elastic collision Kinetic energy remains conserved

kinetic energy before collision= kinetic energy after collision

\frac{1}{2}\text{m}_{1}\text{v}_{1i}^{2} +\frac{1}{2}\text{m}_{2}\text{v}_{2i}^{2} = \frac{1}{2}\text{m}_{1}\text{v}_{1f}^{2} +\frac{1}{2}\text{m}_{2}\text{v}_{2f}^{2}

given, v_{2i} = 0

\text{m}_{1}(\text{v}_{1i}^2-\text{v}_{1f}^2) = \text{m}_{2}\text{v}_{2f}^2

\frac{\text{m}_{1}}{\text{m}_{2}}= \frac{\text{v}_{2f}^{2}}{(\text{v}_{1i}-\text{v}_{1f})^{2}}

putting value of \frac{\text{m}_{1}}{\text{m}_{2}} from previous equation

\frac{\text{v}_{2f}}{\text{v}_{1i}-\text{v}_{1f}}=\frac{\text{v}_{2f}^{2}}{(\text{v}_{1i}-\text{v}_{1f})^{2}}

\text{v}_{2f} = \text{v}_{1i} + \text{v}_{1f}

putting it in equation of momentum, we get

\frac{\text{v}_{1i}}{\text{v}_{1f}}=\frac{\text{m}_{1}+\text{m}_{2}}{\text{m}_{1}-\text{m}_{2}}

putting values \text{v}_{1f}= 3.375\text{m}\setminus\text{s}

\text{v}_{2f} = \text{v}_{1i} + \text{v}_{1f}

\text{v}_{2f} = \text{3.5} + \text{3.375}

\text{v}_{2f} = 6.875

Kinetic energy acquired by nail =\frac{1}{2}\text{m}\text{v}_{2f}^2

                                                     \frac{1}{2}\times 0.01\times 6.875^2

                                                      0.236 J

Hence Kinetic Energy acquired by nail is 0.236 J  

You might be interested in
What decibel level can cause hearing damage to begin
densk [106]

Answer: Noise above 70 dB can cause hearing damage

Explanation:

4 0
3 years ago
Read 2 more answers
Please I need help! This is the last question I need for this assignment!
Ne4ueva [31]

Answer:

When the same amount of heat is added to cold sand and cold water, the temperature change of sand will be higher because of its lower specific heat capacity.

What is specific heat capacity?

Specific heat capacity is the quantity

of heat required to raise a unit mass of

a substance by 1 kelvin.

Specific heat capacity of water and sand

{<em>refer to the above attachment}</em>

Δθ = Q/mc

Thus, for an equal mass of water and sand, when the same amount of heat is added to cold sand and cold water, the temperature change of sand will be higher because of its lower specific heat capacity.

6 0
2 years ago
Is N2 a triple bond
krek1111 [17]
Yes, N2 is a triple bond.
Hope it helps!
5 0
3 years ago
What type of thermometer do you use to measure temperature under the soil?
Serggg [28]

Answer:

soil thermomerter

Explanation:

5 0
3 years ago
True or false Carbon in the form of carbon dioxide is needed for both processes of photosynthesis and cellular respiration True
Anna007 [38]

Yes carbon dioxide is needed for photosynthesis while cellular respiration needs oxygen and dispurses carbon dioxide

5 0
3 years ago
Other questions:
  • Julie throws a ball to her friend Sarah. The ball leaves Julie's hand a distance 1.5 meters above the ground with an initial spe
    11·1 answer
  • Real world trampolines lose energy since they are damped springs with much internal friction. How much energy does the sumo wres
    15·1 answer
  • The femur is a bone in the leg whose minimum cross-sectional area is about 3.70 10-4 m2. A compressional force in excess of 6.60
    10·1 answer
  • Observe yourself breathing and count the number of times you inhale per second. During each breath you probably inhale 0.66 L of
    12·1 answer
  • When a particle vibrates and passes to the next vibration what happens?
    7·1 answer
  • A tennis ball with a velocity of +10.0 m/s to the right is thrown perpendicularly at a wall. After striking the wall, the ball r
    5·1 answer
  • In pea plants Round (R) is a dominant trait and wrinkled nose (r) is a recessive trait. Which combination would result in wrinkl
    15·2 answers
  • A rock has a mass of 3.1 kg. What is its weight on earth
    14·1 answer
  • This mathematical model describes the changes that occur in a sample of
    6·1 answer
  • (A) State the relation between acceleration and momentum (10 marks).
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!