1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
OlgaM077 [116]
2 years ago
15

The collision between a hammer and a nail can be considered to be approximately elastic. estimate the kinetic energy acquired by

a 10 g nail when it is struck by a 550 g hammer moving with an initial speed of 3.5 m/s.
Physics
2 answers:
Setler [38]2 years ago
6 0

Here we can use momentum conservation as in this type of collision there is no external force on it

m_1v_{1i} + m_2v_{2i} = m_1 v_{1f} + m_2v_{2f}

now here we can say

m_1 = 10 g

v_{1i} = 0

m_2 = 550 g

v_{2i} = 3.5 m/s

now here we can say

10*0 + 550 * 3.5 = 10 v_{1f} + 550 v_{2f}

192.5 = v_{1f} + 55 v_{2f}

now by coefficient of restitution

for elastic collision we know that e = 1

v_{2f} - v_{1f} = e(v_{1i} - v_{2i})

v_{2f} - v_{1f} = 0 - 3.5

now by solving the two equation

56v_{2f} = 189

v_{2f} = 3.375 m/s

also we know that

v_{1f} = v_{2f} + 3.5 = 3.375 + 3.5 = 6.875 m/s

so final speed of the nail is 6.875 m/s


belka [17]2 years ago
6 0

Answer:

0.236J

Explanation:

Given:  collision between a hammer and a nail, it is approximately elastic.a 550 g hammer moving with an initial speed of 3.5 m/s struck a 10g nail.

To Find: Kinetic Energy acquired by nail.

Solution: Let mass and initial speed of hammer be=\text{m}_{1} , \text{v}_{1i}

final speed of hammer=\text{v}_{1f}

                mass and initial speed of nail be=\text{m}_{2} , \text{v}_{2i}

                final speed of nail=\text{v}_{2f}

momentum before collision

\text{m}_{1} \text{v}_{1i}  + \text{m}_{2} \text{v}_{2i}

momentum after collision

\text{m}_{1} \text{v}_{1f}  + \text{m}_{2} \text{v}_{2f}

as collision is elastic momentum is conserved

momentum before collision = momentum after collision

\text{m}_{1} \text{v}_{1i} + \text{m}_{2} \text{v}_{2i} = \text{m}_{1} \text{v}_{1f} + \text{m}_{2} \text{v}_{2f}

as nail was at rest initially , \text{v}_{2i} = 0

\text{m}_{1} v_{1i}=\text{m}_{1} v_{1f} +\text{m}_{2} v_{2f}

\text{m}_{1}(\text{v}_{1i} -\text{v}_{1f}) = m_{2} v_{2f}

\frac{\text{m}_{1}}{\text{m}_{2}} = \frac{\text{v}_{2f}^2}{\text{v}_{1i}-\text{v}_{1f}}

kinetic energy before collision

\frac{1}{2}\text{m}_{1}\text{v}_{1i}^{2} +\frac{1}{2}\text{m}_{2}\text{v}_{2i}^{2}

kinetic energy after collision

\frac{1}{2}\text{m}_{1}\text{v}_{1f}^{2} +\frac{1}{2}\text{m}_{2}\text{v}_{2f}^{2}

As in elastic collision Kinetic energy remains conserved

kinetic energy before collision= kinetic energy after collision

\frac{1}{2}\text{m}_{1}\text{v}_{1i}^{2} +\frac{1}{2}\text{m}_{2}\text{v}_{2i}^{2} = \frac{1}{2}\text{m}_{1}\text{v}_{1f}^{2} +\frac{1}{2}\text{m}_{2}\text{v}_{2f}^{2}

given, v_{2i} = 0

\text{m}_{1}(\text{v}_{1i}^2-\text{v}_{1f}^2) = \text{m}_{2}\text{v}_{2f}^2

\frac{\text{m}_{1}}{\text{m}_{2}}= \frac{\text{v}_{2f}^{2}}{(\text{v}_{1i}-\text{v}_{1f})^{2}}

putting value of \frac{\text{m}_{1}}{\text{m}_{2}} from previous equation

\frac{\text{v}_{2f}}{\text{v}_{1i}-\text{v}_{1f}}=\frac{\text{v}_{2f}^{2}}{(\text{v}_{1i}-\text{v}_{1f})^{2}}

\text{v}_{2f} = \text{v}_{1i} + \text{v}_{1f}

putting it in equation of momentum, we get

\frac{\text{v}_{1i}}{\text{v}_{1f}}=\frac{\text{m}_{1}+\text{m}_{2}}{\text{m}_{1}-\text{m}_{2}}

putting values \text{v}_{1f}= 3.375\text{m}\setminus\text{s}

\text{v}_{2f} = \text{v}_{1i} + \text{v}_{1f}

\text{v}_{2f} = \text{3.5} + \text{3.375}

\text{v}_{2f} = 6.875

Kinetic energy acquired by nail =\frac{1}{2}\text{m}\text{v}_{2f}^2

                                                     \frac{1}{2}\times 0.01\times 6.875^2

                                                      0.236 J

Hence Kinetic Energy acquired by nail is 0.236 J  

You might be interested in
Why do yall not hate us country people?
sveticcg [70]

Answer:

Because we don't?

Explanation:

4 0
3 years ago
The electromagnetic interaction _______.A. applies only to charges at rest B. applies only to charges in motion C. is responsibl
Bond [772]

Answer:

C. is responsible for sliding friction and contact forces

8 0
3 years ago
Why are you able to observe the Doppler effect on earth with sound waves but not with light waves?
VladimirAG [237]

Answer: When an ambulance passes with its siren blaring, you hear the pitch of the siren change: as it approaches, the siren’s pitch sounds higher than when it is moving away from you. This change is a common physical demonstration of the Doppler effect.

Explanation:

6 0
3 years ago
You paddle a conoe with a force of 325 N. You and the canoe have a combined mass of 250 kg. What is the acceleration of the cano
Brums [2.3K]

f = ma

Rearranging it, we get;

a =  \frac{f}{m}
Where a is the acceleration, f is the force, and m is the mass

a =  \frac{325}{250}
a = 1.3 \frac{m}{ {s}^{2} }

7 0
3 years ago
Chinook salmon are able to move upstream faster by jumping out of the water periodically; this behavior is called porpoising. Su
deff fn [24]

Answer:he formula for average speed is (total distance/total time)

the y-component does not matter in this problem. so do 6.26(cos45)=4.43m/s to find the x-component velocity which is constant throughout the duration of the flight. the total distance is 2L because he travels distance L twice.

the total time is ((time in water)+(time out of water)) since you dont have time you must eliminate it. to do this you need (distance)/(time)=velocity

solve for time and you get T=D/V

time in water is L/3.52 and time out of water is L/4.43

add them together and you get (4.43L+3.52L)/(15.59) = 7.95L/15.59

that value is your total time

divide you total distance (2L) by total time (7.95L/15.59) and the Ls cancel out and you get

(31.18)/(7.95) = 3.92 m/s = Average Speed

Explanation:

7 0
3 years ago
Other questions:
  • A gravitational blank exist between you and every object in the universe
    15·2 answers
  • In a(n) BLANK , the matter’s identity stays the same.
    13·1 answer
  • Newton’s third law of motion is also known as action/_______?
    11·2 answers
  • Identical marbles are released from the same height on each of the following four frictionless ramps . Compare the speed of the
    8·1 answer
  • A baseball falling toward a player's glove gains _____ energy and loses _____ energy. A. potential; kinetic B. kinetic; potentia
    9·2 answers
  • Question 4 (point)
    5·1 answer
  • Carousel conveyors are used for storage and order picking for small parts. The conveyorsrotate clockwise or counterclockwise, as
    13·1 answer
  • During an experiment a student records the net horizontal force exerted on an object moving in a straight
    5·1 answer
  • If the electric potential in a region is given by v(x)=7/x2 the x component of the electric field in that region is
    9·1 answer
  • Calculate The pressure produced by a force of 392 N acting on an area of 8.0 m^2
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!