There is no illustration of the problem provided but I'll attempt to provide an answer.
The relationship between the electric potential difference between two points and the average strength of the electric field between those two points is given by:
║E║ = ΔV/d
║E║ is the magnitude of the average electric field, ΔV is the potential difference between A and B, and d is the distance between A and B.
We are given the following values:
║E║= 10N/C
d = 3m
Plug these values in and solve for ΔV
10 = ΔV/3
ΔV = 30V
Answer:
The asteroid requires 5.14 years to make one revolution around the Sun.
Explanation:
Kepler's third law establishes that the square of the period of a planet will be proportional to the cube of the semi-major axis of its orbit:
(1)
Where T is the period of revolution and a is the semi-major axis.
In the other hand, the distance between the Earth and the Sun has a value of
. That value can be known as well as an astronomical unit (1AU).
But 1 year is equivalent to 1 AU according with Kepler's third law, since 1 year is the orbital period of the Earth.
For the special case of the asteroid the distance will be:


That distance will be expressed in terms of astronomical units:
⇒ 
Finally, from equation 1 the period T can be isolated:

Then, the period can be expressed in years:


Hence, the asteroid requires 5.14 years to make one revolution around the Sun.
Answer:
A. 58.8m/s
Explanation:
The acceleration due to gravity is 9.8 m/s², so the velocity after 6 seconds is ...
v = at
v = (9.8 m/s²)(6 s) = 58.8 m/s
True.
There is heat energy, for example, and it doesn't involve motion.
Answer: No
Explanation:
Whenever light travelling on a straight line encounters obstruction, it diffracts and scatter.
Scattering of light occurs when light passes through a rough path or a diffused surface.
But in case of spectral diffusion, which is the fluctuation in spectroscopy as a result of time dependent frequency shifts.
Spectral diffusion occurs in particular molecules initiated by excessive excitation energy.
Fluctuation in frequency does not mean diffraction of light or particles
Therefore, spectral diffusion does not cause light to scatter.