14 since K has 1 valence but there’s two so 2 valence for k and oxygen has 6 but there’s two so 12
Answer:
B) 0.32 %
Explanation:
Given that:

Concentration = 1.8 M
Considering the ICE table for the dissociation of acid as:-

The expression for dissociation constant of acid is:
![K_{a}=\frac {\left [ H^{+} \right ]\left [ {CH_3COO}^- \right ]}{[CH_3COOH]}](https://tex.z-dn.net/?f=K_%7Ba%7D%3D%5Cfrac%20%7B%5Cleft%20%5B%20H%5E%7B%2B%7D%20%5Cright%20%5D%5Cleft%20%5B%20%7BCH_3COO%7D%5E-%20%5Cright%20%5D%7D%7B%5BCH_3COOH%5D%7D)


Solving for x, we get:
<u>x = 0.00568 M</u>
Percentage ionization = 
<u>Option B is correct.</u>
Is this math or chemistry....:
Answer:
NH₃
M = n/V(L)
0.844 mol (Both numbers have 3 significant figures so the result has 3 significant figures as well)
Explanation:
Step 1: Given and required data
- Volume of solution (V): 375. mL
- Molar concentration of the solution (M): 2.25 M
- Chemical formula for ammonia: NH₃
Step 2: Calculate the moles (n) of ammonia (solute)
Molarity is equal to the moles of solute divided by the liters of solution.
M = n/V(L)
n = M × V(L)
n = 2.25 mol/L × 0.375 L = 0.844 mol (Both numbers have 3 significant figures so the result has 3 significant figures as well)