Answer:
Answer the last one Nuclear decay rates vary, but chemical reaction rates are constant
Explanation:
Correct me if im wrong
Answer:
a process that involves rearrangement of the molecular or ionic structure of a substance, as distinct from a change in physical form or a nuclear reaction
Answer:
Rock A because after physical weather and chemical weathering it more likely for Rock A to experience more chemical weathering.
Explanation: Weathering: This is a geological term used to describe the various processes and Activities involved in the breaking down of rocks either through physical,mechanical,chemical etc actions into smaller particles.
ROCK A WILL HAVE MORE CHEMICAL WEATHERING BECAUSE THE PHYSICAL WEATHERING MUST HAVE BROKEN DOWN THE PARTICLES FOR EASY WATER AND OTHER SUBSTANCE NEEDED FOR EASIER CHEMICAL REACTION OR WEATHERING.
Answer:
They are strong intermolecular forces
Explanation:
Covalent forces are very strong intermolecular forces. In fact, we can say they are the strongest. This is because several big and giant molecules have covalent bonds holding their molecules together. A good example of this is the buckministerfullerence molecule which contains carbon atom to the order of 60 carbon atoms. It is a very giant molecule and it is covalent bond that is holding the molecules together
The strongest substance in the world is diamond. It is so strong that no other substance can cut it asides another diamond. As strong as it is, the molecule is held together by very strong intermolecular forces of covalent bonds which confers the strength it has on it
Answer : The equilibrium concentration of
will be, (C) 
Explanation : Given,
Equilibrium constant = 14.5
Concentration of
at equilibrium = 0.15 M
Concentration of
at equilibrium = 0.36 M
The balanced equilibrium reaction is,

The expression of equilibrium constant for the reaction will be:
![K_c=\frac{[CH_3OH]}{[CO][H_2]^2}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BCH_3OH%5D%7D%7B%5BCO%5D%5BH_2%5D%5E2%7D)
Now put all the values in this expression, we get:
![14.5=\frac{[CH_3OH]}{(0.15)\times (0.36)^2}](https://tex.z-dn.net/?f=14.5%3D%5Cfrac%7B%5BCH_3OH%5D%7D%7B%280.15%29%5Ctimes%20%280.36%29%5E2%7D)
![[CH_3OH]=2.82\times 10^{-1}M](https://tex.z-dn.net/?f=%5BCH_3OH%5D%3D2.82%5Ctimes%2010%5E%7B-1%7DM)
Therefore, the equilibrium concentration of
will be, (C) 