D, <span>Monotonic gases, which have no inter molecular attractions are most suited as ideal gases </span><span />
Answer:
The ionization of 0.250 moles of H₂SO₄ will produce 0.5 moles of H⁺ (hydrogen ion)
Explanation:
From the ionization of H₂SO₄, we have
H₂SO₄ → 2H⁺ + SO₄²⁻
Hence, at 100% yield, one mole of H₂SO₄ produces two moles of H⁺ (hydrogen ion) and one mole of SO₄²⁻ (sulphate ion), therefore, 0.250 moles of H₂SO₄ will produce 2×0.250 moles of H⁺ (hydrogen ion) or 0.5 moles of H⁺ (hydrogen ion) and 0.25 moles of SO₄²⁻ (sulphate ion).
That is; 0.250·H₂SO₄ → 0.5·H⁺ + 0.250·SO₄²⁻.
Answer:
See explanation
Explanation:
Temperature is defined as a measure of the average kinetic energy of the molecules of a body.
When a substance is heated, the kinetic energy of its molecules increases as the temperature increases; hence the particles of the substance moves faster with increasing temperature.
When heat is withdrawn from a liquid, the temperature decreases and the average kinetic energy of the molecules decreases. The molecules become less energetic hence the liquid changes into solid
Answer:

Explanation:
Although the context is not clear, let's look at the oxidation and reduction processes that will take place in a Fe/Sn system.
The problem states that anode is a bar of thin. Anode is where the process of oxidation takes place. According to the abbreviation 'OILRIG', oxidation is loss, reduction is gain. Since oxidation occurs at anode, this is where loss of electrons takes place. That said, tin loses electrons to become tin cation:

Similarly, iron is cathode. Cathode is where reduction takes place. Reduction is gain of electrons, this means iron cations gain electrons and produce iron metal:

The net equation is then:

However, this is not the case, as this is not a spontaneous reaction, as iron metal is more reactive than tin metal, and this is how the coating takes place. This implies that actually anode is iron and cathode is tin:
Actual anode half-equation:

Actual cathode half-equation:

Actual net reaction:
