The answer is none. Since you have to add your a's first, your left with 0 meaning that there is no more a's meaning that you have no solution. Hope this helps!
As you increase the subintervals the area will be closer and closer to the real value. In other words your approximation gets better.
As you increase the intervals, there will be more rectanagles and the added area of these rectangles are converging towards the actual area under the curve.
![y=x^5-3\\ y'=5x^4\\\\ 5x^4=0\\ x=0\\ 0\in [-2,1]\\\\ y''=20x^3\\\\ y''(0)=20\cdot0^3=0](https://tex.z-dn.net/?f=y%3Dx%5E5-3%5C%5C%20y%27%3D5x%5E4%5C%5C%5C%5C%205x%5E4%3D0%5C%5C%20x%3D0%5C%5C%200%5Cin%20%5B-2%2C1%5D%5C%5C%5C%5C%20y%27%27%3D20x%5E3%5C%5C%5C%5C%0Ay%27%27%280%29%3D20%5Ccdot0%5E3%3D0)
The value of the second derivative for

is neither positive nor negative, so you can't tell whether this point is a minimum or a maximum. You need to check the values of the first derivative around the point.
But the value of

is always positive for

. That means at

there's neither minimum nor maximum.
The maximum must be then at either of the endpoints of the interval
![[-2,1]](https://tex.z-dn.net/?f=%5B-2%2C1%5D)
.
The function

is increasing in its entire domain, so the maximum value is at the right endpoint of the interval.
Answer:
-5(x - 1)
Step-by-step explanation:
you would get -5x - 5 if you solved it