I need help with a question in algebra 2. May you please help me? If that’s fine with you?
Answer:
5/6
Step-by-step explanation:
1/3 + 1/2 is a simple addition fraction problem.
You'd find the LCM (lowest common denominator) which is 6. First, we'll take 1/3 which the denominator becomes 6. You see one side has been basically multiplied by 2, so you'd do it to both sides, giving us 2/6. Next, we do the same thing with 1/2. 2 -> 6 1 -> 3. 3/6. So finally, we have 3/6 + 2/6, which is 5/6.
Answer:
Length of side of rhombus is
Step-by-step explanation:
Given Rhombus ADEF is inscribed into a triangle ABC so that they share angle A and the vertex E lies on the side BC. We have to find the length of side of rhombus.
It is also given that AB=a and AC=b
Let side of rhombus is x.
In ΔCEF and ΔCBA
∠CEF=∠CBA (∵Corresponding angles)
∠CFE=∠CAB (∵Corresponding angles)
By AA similarity rule, ΔCEF~ΔCBA
∴ their sides are in proportion

⇒ 
⇒ 
⇒ 
⇒ 
Hence, length of side of rhombus is
Answer:
4.78 x 10^11
Here is the answer to your problem
Answer:
1. ![(\sqrt[5]{(m+2)})^{3} = (m+2)^{\frac{3}{5}}](https://tex.z-dn.net/?f=%28%5Csqrt%5B5%5D%7B%28m%2B2%29%7D%29%5E%7B3%7D%20%3D%20%20%28m%2B2%29%5E%7B%5Cfrac%7B3%7D%7B5%7D%7D)
2. ![(\sqrt[3]{(m+2)})^{5} = (m+2)^{\frac{5}{3}}](https://tex.z-dn.net/?f=%28%5Csqrt%5B3%5D%7B%28m%2B2%29%7D%29%5E%7B5%7D%20%3D%20%20%28m%2B2%29%5E%7B%5Cfrac%7B5%7D%7B3%7D%7D)
3. ![\sqrt[5]{(m)}^{3}+2 = m^{\frac{3}{5}}+2](https://tex.z-dn.net/?f=%5Csqrt%5B5%5D%7B%28m%29%7D%5E%7B3%7D%2B2%20%3D%20%20m%5E%7B%5Cfrac%7B3%7D%7B5%7D%7D%2B2)
4. ![\sqrt[3]{(m)}^{5}+2 = m^{\frac{5}{3}}+2](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B%28m%29%7D%5E%7B5%7D%2B2%20%3D%20%20m%5E%7B%5Cfrac%7B5%7D%7B3%7D%7D%2B2)
Step-by-step explanation:
Recall that
![(\sqrt[n]{x})^{m} = (x^{\frac{m}{n}})](https://tex.z-dn.net/?f=%28%5Csqrt%5Bn%5D%7Bx%7D%29%5E%7Bm%7D%20%3D%20%20%28x%5E%7B%5Cfrac%7Bm%7D%7Bn%7D%7D%29)
Where
is called radicand and n is called index
1. Root(5, (m + 2) ^ 3)
In this case,
n is 5
m is 3
x = (m + 2)
![(\sqrt[5]{(m+2)})^{3} = (m+2)^{\frac{3}{5}}](https://tex.z-dn.net/?f=%28%5Csqrt%5B5%5D%7B%28m%2B2%29%7D%29%5E%7B3%7D%20%3D%20%20%28m%2B2%29%5E%7B%5Cfrac%7B3%7D%7B5%7D%7D)
2. Root(3, (m + 2) ^ 5)
In this case,
n is 3
m is 5
x = (m + 2)
![(\sqrt[3]{(m+2)})^{5} = (m+2)^{\frac{5}{3}}](https://tex.z-dn.net/?f=%28%5Csqrt%5B3%5D%7B%28m%2B2%29%7D%29%5E%7B5%7D%20%3D%20%20%28m%2B2%29%5E%7B%5Cfrac%7B5%7D%7B3%7D%7D)
3. Root(5, m ^ 3) + 2
In this case,
n is 5
m is 3
x = m
![\sqrt[5]{(m)}^{3}+2 = m^{\frac{3}{5}}+2](https://tex.z-dn.net/?f=%5Csqrt%5B5%5D%7B%28m%29%7D%5E%7B3%7D%2B2%20%3D%20%20m%5E%7B%5Cfrac%7B3%7D%7B5%7D%7D%2B2)
4. Root(3, m ^ 5) + 2
In this case,
n is 3
m is 5
x = m
![\sqrt[3]{(m)}^{5}+2 = m^{\frac{5}{3}}+2](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B%28m%29%7D%5E%7B5%7D%2B2%20%3D%20%20m%5E%7B%5Cfrac%7B5%7D%7B3%7D%7D%2B2)