Answer:
let number = 0
while number < 1
begin
print "Enter a positive integer: "
read number
end
end_while
find and print number's factors:
let prime = TRUE
let currentFactor = 2
let lastFactor = the square root of number truncated
to an integer value
while currentFactor <= lastFactor
begin
if number is evenly divisible by currentFactor
begin
print currentFactor
let number = number / currentFactor
end
else
let currentFactor = currentFactor + 1
end_if
end
end_while
print a message if number is prime:
if prime == TRUE
print "Your number is prime"
end_if
Explanation:
Answer:
Proof is as follows
Proof:
Given that , 
<u>for any function f with period T, RMS is given by</u>
<u />
<u />
In our case, function is 
![RMS = \sqrt{\frac{1}{T}\int\limits^T_0 {[V_{ac} + V_{dc}]^{2} } \, dt }](https://tex.z-dn.net/?f=RMS%20%3D%20%5Csqrt%7B%5Cfrac%7B1%7D%7BT%7D%5Cint%5Climits%5ET_0%20%7B%5BV_%7Bac%7D%20%2B%20V_%7Bdc%7D%5D%5E%7B2%7D%20%7D%20%5C%2C%20dt%20%20%7D)
Now open the square term as follows
![RMS = \sqrt{\frac{1}{T}\int\limits^T_0 {[V_{ac}^{2} + V_{dc}^{2} + 2V_{dc}V_{ac}] } \, dt }](https://tex.z-dn.net/?f=RMS%20%3D%20%5Csqrt%7B%5Cfrac%7B1%7D%7BT%7D%5Cint%5Climits%5ET_0%20%7B%5BV_%7Bac%7D%5E%7B2%7D%20%2B%20V_%7Bdc%7D%5E%7B2%7D%20%2B%202V_%7Bdc%7DV_%7Bac%7D%5D%20%7D%20%5C%2C%20dt%20%20%7D)
Rearranging terms

You can see that
- second term is square of RMS value of Vac
- Third terms is average of VdcVac and given is that average of

so
![RMS = \sqrt{\frac{1}{T}TV_{dc}^{2} + [RMS~~ of~~ V_{ac}]^2 }](https://tex.z-dn.net/?f=RMS%20%3D%20%5Csqrt%7B%5Cfrac%7B1%7D%7BT%7DTV_%7Bdc%7D%5E%7B2%7D%20%20%20%2B%20%5BRMS~~%20of~~%20V_%7Bac%7D%5D%5E2%20%7D)
![RMS = \sqrt{V_{dc}^{2} + [RMS~~ of~~ V_{ac}]^2 }](https://tex.z-dn.net/?f=RMS%20%3D%20%5Csqrt%7BV_%7Bdc%7D%5E%7B2%7D%20%20%20%2B%20%5BRMS~~%20of~~%20V_%7Bac%7D%5D%5E2%20%7D)
So it has been proved that given expression for root mean square (RMS) is valid
Answer:
to break the side window of a car
Explanation: